Rise of the Robots: IO-Link Maximizes Utilization, Saves Time and Money

Manufacturers around the world are buying industrial robots at an incredible pace. In the April 2020 report from Tractia & Statista, “the global market for robots is expected to grow at a compound annual growth rate (CAGR) of around 26 percent to reach just under 210 billion US dollars by 2025.” But are we gaining everything we can to capitalize on this investment when the robots are applied? Robot utilization is a key metric for realizing return-on-investment (ROI). By adding smart devices on and around the robot, we can improve efficiencies, add flexibility, and expand visibility in our robot implementations. To maximize robot utilization and secure a real ROI there are key actions to follow beyond only enabling a robot; these are: embracing the open automation standard IO-Link, implementing smart grippers, and expanding end-effector application possibilities.

In this blog, I will discuss the benefits of implementing IO-Link. Future blog posts will concentrate on the other actions.

Why care about IO-Link?

First, a quick definition. IO-Link is an open standard (IEC 61131-9) that is more than ten years old and supported by close to 300 component suppliers in manufacturing, providing more than 70 automation technologies (figure 1). It works in a point-to-point architecture utilizing a central master with sub-devices that connect directly to the master, very similar to the way USB works in the PC environment. It was designed to be easy to integrate, simple to support, and fast to implement into manufacturing processes.

Figure 1 – The IO-Link consortium has close to 300 companies providing more than 70 automation technologies.

Using standard cordsets and 24Vdc power, IO-Link has been applied as a retrofit on current machines and designed into the newest robotic work cells. Available devices include pneumatic valve manifolds, grippers, smart sensors, I/O hubs, safety I/O, vacuum generators and more. Machine builders and equipment OEMs find that IO-Link saves them dramatically on engineering, building and the commissioning of new machines. Manufacturers find value in the flexibility and diagnostic capabilities of the devices, making it easier to troubleshoot problems and recover more quickly from downtime. With the ability to pre-program device parameters, troublesome complex-device setup can be automated, reducing new machine build times and reducing part replacement times during device failure on the production line.

Capture Data & Control Automation

Figure 2 – With IIoT-ready IO-Link sensors and masters, data can be captured without impacting the automation control.

The final point of value for robotic smart manufacturing is that IO-Link is set up to support applications for the Industrial Internet of Things (IIoT). IO-Link devices are IIoT ready, enabling Industry 4.0 projects and smart factory applications. This is important as predictive maintenance and big-data applications are only possible if we have the capabilities of collecting data from devices in, around and close to the production. As we look to gain more visibility into our processes, the ability to reach deep into your production systems will provide major new insights. By integrating IIoT-ready IO-Link devices into robotic automation applications, we can capture data for future analytics projects while not interrupting the control of the automation processes (figure 2).

2 Replies to “Rise of the Robots: IO-Link Maximizes Utilization, Saves Time and Money”

Leave a Reply