Sensor and Device Connectivity Solutions For Collaborative Robots

Sensors and peripheral devices are a critical part of any robot system, including collaborative applications. A wide variety of sensors and devices are used on and around robots along with actuation and signaling devices. Integrating these and connecting them to the robot control system and network can present challenges due to multiple/long cables, slip rings, many terminations, high costs to connect, inflexible configurations and difficult troubleshooting. But device level protocols, such as IO-Link, provide simpler, cost-effective and “open” ways to connect these sensors to the control system.

Just as the human body requires eyes, ears, skin, nose and tongue to sense the environment around it so that action can be taken, a collaborative robot needs sensors to complete its programmed tasks. We’ve discussed the four modes of collaborative operation in previous blogs, detailing how each mode has special safety/sensing needs, but they have common needs to detect work material, fixtures, gripper position, force, quality and other aspects of the manufacturing process. This is where sensors come in.

Typical collaborative robot sensors include inductive, photoelectric, capacitive, vision, magnetic, safety and other types of sensors. These sensors help the robot detect the position, orientation, type of objects, and it’s own position, and move accurately and safely within its surroundings. Other devices around a robot include valves, RFID readers/writers, indicator lights, actuators, power supplies and more.

The table, below, considers the four collaborative modes and the use of different types of sensors in these modes:

Table 1.JPG

But how can users easily and cost-effectively connect this many sensors and devices to the robot control system? One solution is IO-Link. In the past, robot users would run cables from each sensor to the control system, resulting in long cable runs, wiring difficulties (cutting, stripping, terminating, labeling) and challenges with troubleshooting. IO-Link solves these issues through simple point-to-point wiring using off-the-shelf cables.

Table 2.png

Collaborative (and traditional) robot users face many challenges when connecting sensors and peripheral devices to their control systems. IO-Link addresses many of these issues and can offer significant benefits:

  • Reduced wiring through a single field network connection to hubs
  • Simple connectivity using off-the-shelf cables with plug connectors
  • Compatible will all major industrial Ethernet-based protocols
  • Easy tool change with Inductive Couplers
  • Advanced data/diagnostics
  • Parametarization of field devices
  • Faster/simpler troubleshooting
  • Support for implementation of IIoT/Industry 4.0 solutions

IO-Link: an excellent solution for simple, easy, fast and cost-effective device connection to collaborative robots.

IO-Link reduces waste due to sensor failures

In the last two blogs we discussed about Lean operations and reducing waste as well as Selecting right sensors for the job and the environment that the sensor will be placed. Anytime a sensor fails and needs a replacement, it is a major cause of downtime or waste (in Lean philosophy). One of the key benefits of IO-Link technology is drastically reducing this unplanned downtime and replacing sensors with ease, especially when it comes to measurement sensors or complex smart sensors such as flow sensors, continuous position monitoring sensors, pressure sensors, laser sensors and so on.

When we think about analog measurement sensor replacement, there are multiple steps involved. First, finding the right sensor. Second, calibrating the sensor for the application and configuring its setpoints. And third, hope that the sensor is functioning correctly.

Most often, the calibration and setpoint configuration is a manual process and if the 5S processes are implemented properly, there is a good chance that the procedures are written down and accessible somewhere. The process itself may take some time to be carried out, which would hold up the production line causing undesired downtime. Often these mission critical sensors are in areas of the machine that are difficult to access, making replacing then, let alone configuring, a challenge.

IO-Link offers an inherent feature to solve this problem and eliminates the uncertainty that the sensor is functioning correctly. The very first benefit that comes with sensors enabled with IO-Link is that measurement or readings are in engineering units straight from the sensor including bar, psi, microns, mm, liters/min, and gallons/min. This eliminated the need for measurements to be scaled and adjusted in the programming to engineering units.

Secondly, IO-Link masters offer the ability to automatically reconfigure the sensors. Many manufacturers call this out as automatic device replacement (ADR) or parameter server functionality of the master. In a nutshell, when enabled on a specific port of the multi-port IO-Link master, the master port reads current configuration from the sensor and locks them in. From that time forward, any changes made directly on the sensor are automatically overwritten by these locked parameters. The locked parameters can be accessed and changed only through authorized users. When the time comes to replace the sensor, there is only one step that needs to happen: Find the replacement sensor of the same model and plug it in. That’s it!

1

When the new sensor is plugged-in, the IO-Link master automatically detects that the replacement sensor does not have the correct parameters and automatically updates them on the sensor. Since the readings are directly in the units desired, there is no magic of scaling to fiddle with.

2

It is also important to note, that in addition to the ADR feature, there may be parameters or settings on the sensors that alert you to possible near-future failure of the sensor. This lets you avoid unplanned downtime due to sensor failure. A good example would be a pressure sensor that sends an alert (event) message indicating that the ambient temperature is too high or a photo-eye alerting the re-emitted light value is down close to threshold – implying that either the lens is cloudy, or alignment is off.

To learn more about IO-Link check out our other blogs.

You have options when it comes to connecting your sensors

When it comes to connecting I/O in factory automation settings, there are many options one can choose to build an efficient and cost-effective system. This is one area where you can reduce costs while also boosting productivity.

Single Ended Cables and Hardwired I/O

It is common in the industry for single ended cables to be run from sensors to a controller input card in a centralized control cabinet. And while this method works, it can be costly for a number of reasons, including:

  • Flying leads on single ended cables are time consuming to prepare and wire
  • Wiring mistakes are often made leading to more time troubleshooting
  • I/O Cards for PLCs are expensive
  • Long cable runs to a centralized location add up quickly especially when dealing with analog devices which require expensive shielded cables
  • Lack of scalability and diagnostics

Double Ended Cables and Networked I/O

Using double ended cables along with network I/O blocks allows for a cost-effective solution to distribute I/O and increase up time. There are numerous benefits that come along with this sort of architecture. Some of these benefits are:

  • Reduced cabling — since I/O is distributed, only network cables need to be run back to the control cabinet reducing cost and cabinet size, and sensor cables are shortened since I/O blocks are machine mounted
  • Quicker build time since standard wiring is less labor intensive
  • Diagnostics allows for quicker trouble shooting, leading to lower maintenance costs and reduced downtime

IO-Link

Using IO-Link delivers all of the strengths of networked I/O as well as additional benefits:

  • I/O Hubs allow for scalability
  • Smart devices can be incorporated into your system
  • Parameterization capability
  • Increased diagnostics from intelligent devices
  • Reduced costs and downtime
  • Increased productivity

Inductive Coupling for non-contact connection

Many people are using inductive coupling technology to provide a non-contact connection for their devices. This method allows you to pass both power and signal across an air gap making it ideal for replacing slip rings or multi-pin connectors in many applications. This provides some great options for industry to gain benefits in these areas such as:

  • Reduced wear since there is no physical connection
  • Faster change over
  • Reduced downtime due to the elimination of damaged connector pins

For more information on connectivity and I/O architecture solutions please visit www.balluff.com.

IO-Link Makes Improving OEE in Format Change Easier than Ever

One of the primary applications in Packaging, Food & Beverage that is a huge area for improving overall equipment efficiency (OEE) is format change.  Buyers respond well to specialized or individualized packaging, meaning manufacturers need to find ways to implement those format changes and machine builders must make those flexible machines available.

IO-Link Makes Improving OEE in Format Change Easier than Ever_2

Today, thanks to IO-Link devices, including master blocks, hubs and linear position sensors, improving OEE on format change is more possible today than ever before. IO-Link offers capabilities that make it ideal for format change. It communicates:

  • Process data (control, cyclical communication of process status)
  • Parameter data (configuration, messaging data with configuration information)
  • Event data (diagnostics, communication from device to master including diagnostics/errors)

What is format change and how does it impact OEE?

Format change is the physical adjustments necessary to make to a machine when the product is altered in some way.  It could be a change in carton size, package size, package design, case size or a number of other modifications to the product or packaging.  The time to adjust the machine itself or the sensors on the machine can take anywhere from 30 minutes to an entire eight- hour shift.

Types of format changes to consider when seeking to improve your OEE:

Guided format change is when the operator is assisted or guided in making the change.  For example, having to move or slide a guide rail into a new position.  IO-Link linear position sensors can help guide the operator, so the position is exact every time. This reduces time by eliminating the need to go back and look at an HMI or cheat sheet to determine if everything is in the right position.

Change parts is when a part needs to be swapped out on the machine for the next production run.  An example of this is when the bag size on a bagger or vertical form fill and seal (VFFS) machine changes and the forming tube needs to be changed.  Having an RFID tag on the forming tube and a RFID reader on the machine allows for easy verification that the correct forming tube was put on the machine and only takes seconds.

Color Change is when the color of a pouch, package or container changes for the next production run like when a yogurt pouch changes color or design while the size and shape remain the same as previous production runs. Smart color photo electric sensors can change the parameters on the photo eye to detect the correct color of the new pouch occurs instantly upon changing the recipe on the machine.

Developing semi-automated or fully automated solutions can improve OEE in regard to format change by helping reduce the time needed to make the change and providing consistent and accurate positioning with the ability to automatically change parameters in the sensor.

Being smart, easy and universal, IO-Link helps simplify format change and provides the ability to change sensor parameters quickly and easily.

IO-Link Makes Improving OEE in Format Change Easier than Ever_1

How TSN boosts efficiency by setting priorities for network bandwidth

As manufacturers move toward Industry 4.0 and the Industrial Internet of Things (IIoT), common communication platforms are needed to achieve the next level of efficiency boost. Using common communication platforms, like Time-Sensitive Networking (TSN), significantly reduces the burden of separate networks for IT and OT without compromising the separate requirements from both areas of the plant/enterprise.

TSN is the mother of all network protocols. It makes it possible to share the network bandwidth wisely by allocating rules of time sensitivity. For example, industrial motion control related communication, safety communication, general automation control communication (I/O), IT software communications, video surveillance communication, or Industrial vision system communication would need to be configured based on their time sensitivity priority so that the network of switches and communication gateways can effectively manage all the traffic without compromising service offerings.

If you are unfamiliar with TSN, you aren’t alone. Manufacturers are currently in the early adopter phase. User groups of all major industrial networking protocols such as ODVA (CIP and EtherNet/IP), PNO (for PROFINET and PROFISAFE), and CLPA (for CC-Link IE) are working toward incorporating TSN abilities in their respective network protocols. CC-Link IE Field has already released some of the products related to CC-Link IE Field TSN.

With TSN implementation, the current set of industrial protocols do not go away. If a machine uses today’s industrial protocols, it can continue to use that. TSN implementation has some gateway modules that would allow communicating the standard protocols while adding TSN to the facility.

While it would be optimal to have one universal protocol of communication across the plant floor, that is an unlikely scenario. Instead, we will continue to see TSN flavors of different protocols as each protocol has its own benefits of things it does the best. TSN allows for this co-existence of protocols on the same network.

 

IO-Link devices deliver data specific to your manufacturing operations needs

IO-Link is a point-to-point communication standard [IEC61131-9]. It is basically a protocol for communicating information from end devices to the controller and back. The beauty of this protocol is that it does not require any specialized cabling. It uses the standard 3-pin sensor cable to communicate. Before IO-Link, each device needed a different cable and communication protocol. For example, measurement devices needed analog signals for communication and shielded cables; digital devices such as proximity sensors or photo eyes needed 2-pin/3-pin cables to communicate ON/OFF state; and any type of smart devices such as laser sensors needed both interfaces requiring multi-conductor cables. All of these requirements and communication was limited to signals.

Shishir1

With IO-Link all the devices communicate over a standard 3-pin (some devices would require 4/5 pin depending if they need separate power for actuation). And, instead of communicating signals, all these devices are communicating data. This provides a tremendous amount of flexibility in designing the controls architectures for the next generation machines.

IO-Link data communication can be divided into 3 parts:

  1. Process data: This is the basic functionality of the sensor communicated over cyclical messages. For example, a measurement device communicating measurement values, not 4-20mA signals, but the engineering units of measurement.
  2. Parameter data: This is a cyclic messaging data communication and where IO-Link really shines. Manufacturers can add significant value to their sensors in this area. Parameter data is communicated only when the controller wants to make changes to the sensor. Examples of this include changing the engineering units of measurement from inches to millimeters or feet, or changing the operational mode of a photoelectric sensor from through-beam to retro-reflective, or even collecting capacitance value from a capacitive sensor. There is no specific parameter data governed by the consortium — consortium only focuses on how this data is communicated.
  3. Event data: This is where IO-Link helps out by troubleshooting and debugging issues. Event messages are generated by the sensor to inform the controller that something has changed or to convey critical information about the sensor itself. A good example would be when a photoeye lens gets cloudy or knocked out of alignment causing a significant decrease in the re-emitted light value and the sensor triggers an event indicating the probable failure. The other example is the sensor triggering an event to alert the control system of a high amperage spike or critical ambient temperatures. When to trigger these events can be scheduled through parameter data for that sensor.

Shishir2

Each and every IO-Link device on the market offers different configurations and are ideally suited for various purposes in the plant. If inventory optimization is the goal of the plant, the buyer should look for features in the IO-Link device that can function in different modes of operation such as a photo eye that can operate as through-beam or retro-reflective. On the other hand, if machine condition monitoring is the objective, then he should opt for sensors that can offer vibration and ambient temperature information along with the primary function.

In short, IO-Link communication offers tremendous benefits to operations. With options like auto-parameterization and cable standardization, IO-Link is a maintenance-friendly standard delivering major benefits across manufacturing.

Shishir3

How IO-Link is Revolutionizing Overall Equipment Efficiency

Zero downtime.  This is the mantra of the food and beverage manufacturer today.  The need to operate machinery at its fullest potential and then increase the machines’ capability is where the demands of food and beverage manufacturers is at today.  This demand is being driven by smaller purchase orders and production runs due to e-commerce ordering, package size variations and the need for manufacturers to be more competitive by being flexible.

Using the latest technology, like IO-Link, allows manufacturers to meet those demands and improve their Overall Equipment Efficiency (OEE) or the percentage of manufacturing time that is truly productive.  OEE has three components:

  1. Availability Loss
    1. Unplanned Stops/Downtime – Machine Failure
    2. Planned Downtime – Set up and AdjustmentsS
  2. Performance Loss
    1. Small Stops – Idling and Minor Stops
    2. Slow Cycles – Reduced Speed
  3. Quality Loss
    1. Production Rejects – Process Defects
    2. Startup Rejects – Reduced Yield

IO-Link is a smart, easy and universal way to connect devices into your controls network.

The advantage of IO-Link is that it allows you to connect to EtherNet/IP, CC-Link & CC-LinkIE Field, Profinet & Profibus and EtherCAT & TCP/IP regardless of the brand of PLC.  IO-Link also allows you to connect analog devices by eliminating traditional analog wiring and provides values in actual engineering units without scaling back at the PLC processor.

Being smart, easy and universal, IO-Link helps simplify controls architecture and provides visibility down to the sensor and device.

IO-Link communicates the following:

  • Process data (Control, cyclical communication of process status)
  • Parameter data (Configuration, messaging data with configuration information)
  • Event data (Diagnostics, Communication from device to master (diagnostics/errors )

This makes it the backbone of the Smart Factory as shown in the graphic below.

 

IO-Link Simplifies the Controls Architecture

IO-Link OEE1

IO-Link OEE2

Why IO-Link is the Best Suited Technology for Smart Manufacturing

While fieldbus solutions utilize sensors and devices with networking ability, they come with limitations. IO-Link provides one standard device level communication that is smart in nature and network independent. That enables interoperability throughout the controls pyramid, making it the most suitable choice for smart manufacturing.

IO-Link offers a cost effective solution to the problems. Here is how:

  • IO-Link uses data communication rather than signal communication. That means the communication is digital with 24V signal with high resistance to the electrical noise signals.
  • IO-Link offers three different communication modes: Process communication, Diagnostic communication (also known as configuration or parameter communication), and Events.
    • Process communication offers the measurement data for which the device or sensor is primarily selected. This communication is cyclical and continuous in nature similar to discrete I/O or analog communication.
    • Diagnostic communication is a messaging (acyclic) communication that is used to set up configuration parameters, receive error codes and diagnostic messages.
    • Event communication is also acyclic in nature and is how the device informs the controller about some significant event that the sensor or that device experienced.
  • IO-Link is point-to-point communication, so the devices communicate to the IO-Link master module, which acts as a gateway to the fieldbus or network systems or even standard TCP/IP communication system. So, depending on the field-bus/network used, the IO-Link master may change but all the IO-Link devices enjoy the freedom from the choice of network. Power is part of the IO-Link communication, so it does not require separate power port/drop on the devices.
  • Every open IO-Link master port offers expansion possibilities for future integration. For example, you could host an IO-Link RFID device or a barcode reader for machine access control as a part of a traceability improvement program.

For more information, visit www.balluff.com/io-link.

The Need for Data and System Interoperability in Smart Manufacturing

As technology advances at a faster pace and the world becomes flatter, manufacturing operations are generally focused on efficient production to maximize profitability for the organization. In the new era of industrial automation and smart manufacturing, organizations are turning to data generated on their plant floors to make sound decisions about production and process improvements.

Smart manufacturing improvements can be divided roughly into six different segments: Predictive Analytics, Track and Trace, Error Proofing, Predictive Maintenance, Ease of Troubleshooting, and Remote Monitoring.IOLink-SmartManufacturing_blog-01To implement any or all of these improvements requires interoperable systems that can communicate effectively and sensors and devices with the ability to provide the data required to achieve the manufacturer’s goals. For example, if the goal is to have error free change-overs between production cycles, then feedback systems that include identification of change parts, measurements for machine alignment changes, or even point of use indication for operators may be required.  Similarly, to implement predictive maintenance, systems require devices that provide alerts or information about their health or overall system health.

Traditional control system integration methods that rely heavily on discrete or analog (or both) modes of communication are limited to specific operations. For example, a 4-20mA measurement device would only communicate a signal between 4-20mA. When it goes beyond those limits there is a failure in communication, in the device or in the system. Identifying that failure requires manual intervention for debugging the problem and wastes precious time on the manufacturing floor.

The question then becomes, why not utilize only sensors and devices with networking ability such as a fieldbus node? This could solve the data and interoperability problems, but it isn’t an ideal solution:

  • Most fieldbuses do not integrate power and hence require devices to have separate power drops making the devices bulkier.
  • Multiple fieldbuses in the plant on different machines requires the devices to support multiple fieldbus/network protocols. This can be cost prohibitive, otherwise the manufacturer will need to stock all varieties of the same sensor.
  • Several of the commonly used fieldbuses have limitations on the number nodes you can add — in general 256 nodes is capacity for a subnet. Additional nodes requires new expensive switches and other hardware.

IOLink-SmartManufacturing_blog-02IO-Link provides one standard device level communication that is smart in nature and network independent, thus it enables interoperability throughout the controls pyramid making it the most suitable choice for smart manufacturing.

We will go over more specific details on why IO-Link is the best suited technology for smart manufacturing in next week’s blog.

 

Safely Switch Off Cylinders While Transmitting Field Data

Is it possible to safely switch off cylinders while simultaneously transmitting field data and set up the system in accordance with standards? Yes!

In order to rule out a safety-critical fault between adjacent printed circuit board tracks/contact points (short circuit) according to DIN EN ISO 13849, clearance and creepage distances must be considered. One way to eliminate faults is to provide galvanic isolation by not interconnecting safety-relevant circuits/segments. This means  charge carriers from one segment cannot switch over to the other, and the separation makes it possible to connect the safety world with automation — with IO-Link. Safely switching off actuators and simultaneously collecting sensor signals reliably via IO-Link is possible with just one module. To further benefit from IO-Link and ensure safety at the same time, Balluff’s I/O module is galvanically isolated with a sensor and an actuator segment. The two circuits of the segments are not interconnected, and the actuator segment can be safely switched off without affecting the sensors. Important sensor data can still be monitoring and communicated.

The topological structure and the application of this safety function is shown in this figure as an example:

2D-SAGT-Betriebsanleitung_v2

  1. A PLC is connected to an IO-Link master module via a fieldbus system.
  2. The IO-Link master is the interface to all I/O modules (IO-Link sensor/actuator hubs) or other devices, such as IO-Link sensors. The IO-Link communication takes place via a standardized M12 connector.
  3. Binary switching elements can be connected to the galvanically isolated sensor/actuator hub (BNI IOL-355). The four connection ports on the left correspond to the sensor segment and the four ports on the right correspond to the actuator segment. Communication of the states is done via IO-Link.
  4. The power supply for both segments takes place via a 7/8″ connection, whereby attention must be paid to potential separated routing of the sensor and actuator circuits. Both the power supply unit itself and the wiring to the IO-Link device with the two segments must also ensure external galvanic isolation. This is made possible by separating the lines with a splitter.
  5. An external safety device is required to safely interrupt the supply voltage of the actuator segment (four ports simultaneously). Thus, the module can implement safety functions up to SIL2 according to EN62061/PLd and ISO 13849.  For example, this can happen through the use of a safety relay, whereby the power supply is safely disconnected after actuation of peripheral safety devices (such as emergency stops and door switches). At the same time, the sensor segment remains active and can provide important information from the field devices.

The module can handle up to eight digital inputs and outputs. If the IO-Link connection is interrupted, the outputs assume predefined states that are retained until the IO-Link connection is restored. Once the connection is restored, this unique state of the machine can be used to continue production directly without a reference run.

An application example for the interaction of sensors and actuators in a safety environment is the pneumatic clamping device of a workpiece holder. The position feedback of the cylinders is collected by the sensor segment, while at the same time the actuator segment can be switched off safely via its separately switchable safety circuit. If the sensor side is not required for application-related reasons, galvanically isolated IO-Link modules are also available with only actuator segments (BNI IOL 252/256). An isolated shutdown can protect up to two safety areas separately.