IO-Link Boosts Plant Productivity

In my previous blog, Using Data to Drive Plant Productivity, I categorized reasons for downtime in the plant and also discussed how data from devices and sensors could be useful in boosting productivity on the plant floor. In this blog, I will focus on where this data is and how to access it. I also touched on the topic of standardizing interfaces to help boost productivity – I will discuss this topic in my future blog.

Sensor technology has made significant progress in last two decades. The traditional transistor technology that my generation learned about is long gone. Almost every sensor now has at least one microchip and possibly even MEMs chips that allow the sensor to know an abundance of data about itself and the environment it which it resides. When we use these ultra-talented sensors only for simple signal communication, to understand presence/absence of objects, or to get measurements in traditional analog values (0-20mA, 0-10V, +5/-5V and so on), we are doing disservice to these sensors as well as keeping our machines from progressing and competing at higher levels. It is almost like choking the throat of the sensor and not letting it speak up.

To elaborate on my point, let’s take following two examples: First, a pressure sensor that is communicating 4-20mA signal to indicate pressure value. Now, that sensor can not only read pressure value but, more than likely, it can also register the ambient temperatures and vibrations. Although, the sensor is capable of understanding these other parameters, there is no way for it to communicate that information to the higher level controller. Due to this lack of ambient information, we may not be able to prevent some eminent failures. This is because of the choice of communication technology we selected – i.e. analog signal communication.

For the second example, let us take a simple photoeye sensor that only communicates presence/absence through discrete input and 0/1 signal. This photoeye also understands its environment and other more critical information that is directly related to its functionality, such as information about its photoelectric lens. The sensor is capable of measuring the intensity of re-emitted light, because based on that light intensity it is determining presence or absence of objects. If the lens becomes cloudy or the alignment of the reflector changes, it directly impacts the remitted light intensity and leads to sensor failure. Due to the choice of digital communication, there is no way for the sensor to inform the higher level control of this situation and the operator only learns of it when the failure happens.

If  a data communication technology, such as IO-Link, was used in these scenarios instead of signal communication, we could unleash these sensors to provide useful information about themselves as well as about their environment. If we collect this data or set alerts in the sensor for the upper/lower limits on this type of information, the maintenance teams would know in advance about the possible failures and prevent these failures to avoid eminent downtime.

Collecting this data at appropriate frequencies could help build a more relevant database and demonstrate patterns for the next generation of machine learning and predictive maintenance initiatives. This would be data driven continuous improvement to prevent failures and boost productivity.

The information collected from sensors and devices – so called smart devices – not only helps end users of automation to boost their plant’s productivity, but also helps machine builders to better understand their own machine usage and behaviors. Increased knowledge improves the designs for the next generation of machines.

If we utilized these smart sensors and devices at our change points in the machine, it would help fully or partially automate the product change-overs. With IO-Link as a technology, these sensors can be reconfigured and re-purposed for different applications without needing different sensors or manual tunings.

IO-Link technology has a built in feature called “automatic parameterization” that helps reduce plant down-time when sensors need replaced. This feature stores IO-Link devices’ configuration on the master port as well as all the configuration is also persistent in the sensor. Replacement is as simple as connecting the new sensor of the same type, and the IO-Link master downloads all the parameters and  replacement is complete.

Let’s recap:

  1. IO-Link unleashes a sensor’s potential to provide information about its condition as well as the ambient conditions, enabling condition monitoring, predictive maintenance and machine learning.
  2. IO-Link offers remote configuration of devices, enabling quick and automated change overs on the production line for different batches, reducing change over times and boosting plant productivity.
  3. IO-Link’s automatic parameterization feature simplifies device replacement, reducing unplanned down-time.

Hope this helps boost productivity of your plant!

Rise of the Robots: IO-Link Maximizes Utilization, Saves Time and Money

Manufacturers around the world are buying industrial robots at an incredible pace. In the April 2020 report from Tractia & Statista, “the global market for robots is expected to grow at a compound annual growth rate (CAGR) of around 26 percent to reach just under 210 billion US dollars by 2025.” But are we gaining everything we can to capitalize on this investment when the robots are applied? Robot utilization is a key metric for realizing return-on-investment (ROI). By adding smart devices on and around the robot, we can improve efficiencies, add flexibility, and expand visibility in our robot implementations. To maximize robot utilization and secure a real ROI there are key actions to follow beyond only enabling a robot; these are: embracing the open automation standard IO-Link, implementing smart grippers, and expanding end-effector application possibilities.

In this blog, I will discuss the benefits of implementing IO-Link. Future blog posts will concentrate on the other actions.

Why care about IO-Link?

First, a quick definition. IO-Link is an open standard (IEC 61131-9) that is more than ten years old and supported by close to 300 component suppliers in manufacturing, providing more than 70 automation technologies (figure 1). It works in a point-to-point architecture utilizing a central master with sub-devices that connect directly to the master, very similar to the way USB works in the PC environment. It was designed to be easy to integrate, simple to support, and fast to implement into manufacturing processes.

Figure 1 – The IO-Link consortium has close to 300 companies providing more than 70 automation technologies.

Using standard cordsets and 24Vdc power, IO-Link has been applied as a retrofit on current machines and designed into the newest robotic work cells. Available devices include pneumatic valve manifolds, grippers, smart sensors, I/O hubs, safety I/O, vacuum generators and more. Machine builders and equipment OEMs find that IO-Link saves them dramatically on engineering, building and the commissioning of new machines. Manufacturers find value in the flexibility and diagnostic capabilities of the devices, making it easier to troubleshoot problems and recover more quickly from downtime. With the ability to pre-program device parameters, troublesome complex-device setup can be automated, reducing new machine build times and reducing part replacement times during device failure on the production line.

Capture Data & Control Automation

Figure 2 – With IIoT-ready IO-Link sensors and masters, data can be captured without impacting the automation control.

The final point of value for robotic smart manufacturing is that IO-Link is set up to support applications for the Industrial Internet of Things (IIoT). IO-Link devices are IIoT ready, enabling Industry 4.0 projects and smart factory applications. This is important as predictive maintenance and big-data applications are only possible if we have the capabilities of collecting data from devices in, around and close to the production. As we look to gain more visibility into our processes, the ability to reach deep into your production systems will provide major new insights. By integrating IIoT-ready IO-Link devices into robotic automation applications, we can capture data for future analytics projects while not interrupting the control of the automation processes (figure 2).

Chain of Support: The Link to Performance During Emergencies

What businesses do in the face of adversity can expose what they are at their core. Adversity is like a catalyst to an otherwise stable state. It forces a reaction. In a chemical reaction, we can predict how a known catalyst will affect a known solution. However, companies are much more unpredictable.

As automation takes center stage in a world of decreased human to human contact and tighter labor budgets, it is critical to understand who your automation partners really are. Who are the humans behind the brands, and what processes do they have in place to respond to emergencies? In manufacturing, downtime, whether planned or not, must be minimized.

One thing we know for certain about adversity is it will happen. Know how your automation partners will respond to a problem. Have them explain their plan to you before the problem occurs. Them having a plan, and you being aware of it, minimizes the impact on production. You can’t wait until a situation occurs during third shift on a Friday to have the discussion.

Knowing the answers to key questions ahead of time can advert a crisis. Who do you call when you need a replacement part? Are they local? How quickly can they respond? If that first person isn’t available what is my next step? When can someone be available? Can they come on site or will they support remotely? How long will it take to get a replacement part? Do you offer assistance with deployment?

The answers to these questions make up the chain of support for a product. Frankly, these answers are the things that truly delineate automation companies. You can always count on innovative technologies to be released to address quality, conformance and efficiency, but you have to make sure there is a secure chain of support behind those technologies. Companies that can clearly explain what this looks like are the ones who will be around for the long haul. Afterall, it’s what we do in the face of adversity that defines who we are.

Workers Wanted: Building a Team to Thrive in Industry 4.0

Manufacturers enjoy talking about the new technologies available as we speed ahead to Industry 4.0. And while it is true (very true) that improved technologies and the increase in data those new technologies provide are drivers for success, it is only with the right people in place that business can thrive.

Over the next decade, 4.6 million manufacturing jobs will likely be needed, and 2.4 million are expected to go unfilled due to the skills gap. Moreover, according to a recent report, the lack of qualified talent could take a significant bite out of economic growth, potentially costing as much as $454 billion from manufacturing GDP in 2028 alone. (Source: Deloitte and The Manufacturing Institute)

But this isn’t a future problem. It is today’s problem and it is already negatively impacting the bottom line for many businesses. During the first quarter of 2019, more than 25% of manufacturers had to turn down new business opportunities due to a lack of workers, according to a report from the National Association of Manufacturers (NAM).

Manufacturers need to respond to this issue. NOW. We need to start by changing the perception of what it means to work in smart manufacturing. We need to show potential workers what is happening inside our plants and what a career in manufacturing can look like — good pay, clean facilities, challenging work and advancement opportunities.

We can start this by taking simple steps like participating in Manufacturing Day activities, opening our doors to the public and letting them see what we do. Show them how manufacturing has changed. Manufacturing Day is held the first Friday of October each year to help dispel common misconceptions about manufacturing in a coordinated effort and while it is growing, still not enough businesses are involved.

We can’t solve our labor problems in a day. We also need to embrace new talent pipelines, work with schools to encourage students receive the basic training needed to join our teams, create co-op and intern opportunities, invest in training, and adapt our culture to better appeal to the younger generations we need to join us.

Our younger generations are highly technical. They don’t know of a world without technology and automation. Their ability isn’t the issue.  We need to convince them that they can find success and rewarding careers in manufacturing and then help then gain the skills to become productive members of our teams.

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orients them correctly and then feeds them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

RFID in the Manufacturing Process: A Must-Have for Continuous Improvement

There is quite an abundance of continuous improvement methodologies implemented in manufacturing processes around the globe. Whether it’s Lean, Six Sigma, Kaizen, etc., there is one thing that all of these methodologies have in common, they all require actionable data in order to make an improvement.  So, the question becomes: How do I get my hands on actionable data?

All data begins its life as raw data, which has to be manipulated to produce actionable data. Fortunately, there are devices that help automate this process. Automatic data collection (ADC), which includes barcode and RFID technology, provides visibility into the process. RFID has evolved to become the more advanced method of data collection because it doesn’t require a centralized database to store the data like barcode technology. RFID stores the data directly on the product or pallet in the process, which allows for much more in-depth data collection.

rfid

RFID’s greatest impact on the process tends to be improving overall quality and efficiency. For example, Company X is creating widgets and there are thirty-five work cells required to make a widget. Between every work cell there is a quality check with a vision system that looks for imperfections created in the prior station. When a quality issue is identified, it is automatically written to the tag.  In the following work cell the RFID tag is read as soon as it enters the station. This is where the raw data becomes actionable data. As soon as a quality issue has been identified, someone or something will need to take action. At this point the data becomes actionable because it has a detailed story to tell. While the error code written to the tag might just be a “10”, the real story is: Between cells five and six the system found a widget was non-conforming. The action that can be taken now is much more focused. The process at cell five can be studied and fixed immediately, opposed to waiting until an entire batch of widgets are manufactured with a quality issue.

Ultimately, flawless execution is what brings success to organizations.  However, in order to execute with efficiency and precision the company must first have access to not only data, but actionable data. Actionable data is derived from the raw data that RFID systems automatically collect.

Learn more about RFID technology at www.balluff.com.

 

Rise of the Robots – 3 Ways to Be On Their Team

While originally a mixed reviewed 1994 console video game, the recently published report by The Boston Consulting Group titled “The Rise of Robotics”  really made me realize how important it is that we embrace robotics in our manufacturing processes.  And I strongly agree with this statement: “Because robots can sharply improve productivity and offset regional differences in labor costs and availability, they’ll likely have a major impact on the competitiveness of companies and countries alike.”  They studied the growth of the usage of robots in personal, commercial, military and industrial use and the numbers were quite powerful.  Of interest to me is the rise in industrial robotics; doubling in 5 years from $5.8b to $11.0b in 2015.  And the growth is expected to more than double again by 2025 to $24.4b in the industrial space.

What this means for manufacturers, machine builders and component suppliers is we need to make sure our people are trained to support this growth and that we we have strong peripheral technologies to support robots as they grow and expand.  Even today there are some great technologies available in sensors and controls that make robotic integration easier for manufacturing companies.

So here are the three ways to make sure you are your robot’s ally.

  1. Maximize Their Payload!

    No one wants to be treated like they can’t help… especially your robots, they want you to utilize them and feel appreciated.  For most robotics right now, payload size & payload weight is a limiting factor.  Mini sensing products with precision switch points, small form factors and low mass allow for the design of low weight, compact payloads without limiting the functionality or speed of the robot.

  2. Keep them Working!

    A working robot is a happy robot.  By adding flexible tooling or quick-change tooling to the end-effector of a robot you can have one arm perform multiple functions and keep idle arms to a minimum, increasing their value and “happiness.”  Multiple products are out there to allow for this, however there is a technology that allows for sensor connections through inductive coupling that dramatically decreases repair issues and downtime due to tool changer pins.

  3. Remove the Chains!  

    What’s the deal with cable dress packs… they look like really bad suspenders sometimes… you see them, you don’t like how they look, but you need it to keep your pants on… I guarantee that robots don’t like these things either… And with all that flexing something in there will fail regularly.  There are some great technologies to reduce the sensor cables running on the arm and add flexibility and they are supported by the open standard IO-Link (discussed in other posts here!).

So as you integrate robots more and more into the manufacturing we are doing, please start thinking how to align yourself as a robot’s ally.  Because I know I want to be on this guy’s team…

WOW! It’s a bolt!?

Our Databolt never fails to grab the attention of everyone who has ever ventured to take a look in my sample case. In a kit of a hundred plus RFID tags which vary in frequency and form factor, it’s the one that draws the most questions, by far. Without a doubt, it is unique, it is rugged, and it is a pretty ingenious method of attaching an RFID tag to an item that needs to be identified and tracked through a process.  However, I couldn’t help but think…it’s just a bolt.

If you have ever been to a manufacturing trade show then you know that the “wow factor” is pretty common in this industry. From Blackjack dealing robots to machines the size of a typical suburban home, you must admit there is some impressive stuff out there.

Never did I consider the Databolt a “wow” product until a recent issue of Popular Mechanics featured the Balluff Databolt in an article regarding RFID traceability at GM’s engine plant in Tonawanda, NY. After reading the article I realized that wow can mean different things. So when I see a friend I haven’t seen for fifteen years and the first thing they say is wow. Is it wow, I haven’t seen you for a long time? Or wow, you’ve gained sixty pounds and are losing your hair? I guess it is to be left open for interpretation.

My vanity aside, it is now pretty clear that when the Databolt produces a wow, it is not necessarily a wow, this is the coolest piece of technology I have ever seen. More accurately, it is most likely wow, this simple little bolt can save my company millions by:

  • Creating visibility into the production process
  • Helping to comply with regulatory and quality standards
  • Proactively managing product recalls with near-real-time corrective action
  • Improving customer safety and satisfaction
  • Reducing the cost of nonconformance

So, that is my take on what people really mean when they say “wow” in regards to the Databolt. Check out the article and determine for yourself how wow should be interpreted.

http://www.popularmechanics.com/cars/news/industry/this-bolt-is-the-key-to-gms-high-tech-assembly-line-16324897

My DeviceNet System is Giving Me Heartburn

devicenet analyzerDuring the recent economic downturn, businesses have lost scores of experienced, trained personnel who were very familiar with (among other things) monitoring the health of their DeviceNet System and who may have been responsible for keeping things “up and running”.  Now that business is ramping back up, companies are running lean and we’re all doing “more with less” of everything (including people), the need for rapidly diagnosing issues on a DeviceNet system has increased.  These reasons are exactly why the DeviceNet Analyzer was developed.

The analyzer is a collection of components used for analysis, monitoring and maintaining DeviceNet systems without having to call a third-party to conduct these procedures. The ROI is amazingly fast after technicians have been trained on the use of this powerful tool for checking DeviceNet and CAN bus installations:

  •  Analyze and track down telegrams with poor signal quality. Check for causes of faults, like missing bus terminations (or too many bus terminations), faulty bus drivers, or trunk and drop lines that are too long.
  • Physical cable troubleshooting is accomplished on a “wire test” function that detects the location of cable breaks and short circuits.  “Weak Spots” like incorrect cable types, lengths, and faulty plugs are also located.
  • Monitor…comparisons can be made at regular or continuous intervals via an online function.  Gradual degradation of system quality can be seen and proactive preventative maintenance can in turn be enacted.

If you have DeviceNet “Heartburn”…there is an Antacid! For more information on the DeviceNet Analyzer, click here or watch the video below.

Tracking low-cost assets with RFID tags…Is it worth it?

First, a lesson in Lexicography

Lexi-what!? Don’t be alarmed. This blog is not as boring as it sounds, especially if you are involved in manufacturing. Lexicography is the art of compiling, writing and editing dictionaries. Sounds like a ton of fun, but let’s move quickly to the point to prevent nausea or inducing sleep. Value, according to dictionary.com when used as a noun, is defined as relative worth, merit, or importance. Notice, the lexicographer mentions nothing about cost.

Tracking valuable assets using RFID within the walls of a plant has become common practice for many organizations. Tracking fork trucks, specialized equipment, machinery and other high cost items are a no-brainer. However, experienced users of RFID technology have realized that it is important to know the location of a high cost asset, but it is paramount to know the location of a high value item.

Defining the VALUE of assets (tools, measurement and calibration devices, specialized machines etc.) can be a tricky game. Conversely, it is not difficult to record the cost of an asset on a balance sheet. A tool which has a cost of $50 doesn’t have a VALUE of $50.

Do you really know what your assets are worth? Is your $50 tool worth hundreds, thousands, or even millions? How is that possible? This is fairly straight forward. If that tool is an integral part in the operation of the manufacturing line then every minute that tool is “missing” is a minute of downtime. How much does a minute of downtime cost your company? How much does an hour of downtime cost your company? Does this tool help your final product conform to standards? What is the cost of nonconformance? What are the financial implications of a product recall? These questions need to be addressed when determining whether or not you should track your assets.

Continue reading “Tracking low-cost assets with RFID tags…Is it worth it?”