Automated Welding With IO-Link

IO-Link technologies have been a game-changer for the welding industry. With the advent of automation, the demand for increasingly sophisticated and intelligent technologies has increased. IO-Link technologies have risen to meet this demand. Here I explain the concepts and benefits of I-O Link technologies and how they integrate into automated welding applications.

What are IO-Link technologies?

IO-Link technologies refer to an advanced communication protocol used in industrial automation. The technology allows data transfer, i.e., the status of sensors, actuators, and other devices through a one-point connection between the control system and individual devices. Also, it enables devices to communicate among themselves quickly and efficiently. IO-Link technologies provide real-time communication, enabling continuous monitoring of devices to ensure optimal performance.

Benefits of IO-Link technologies

    • Enhanced data communication: IO-Link technologies can transfer data between the control system and sensors or devices. This communication creates an open and transparent network of information, reflecting the real-time status of equipment and allowing for increased reliability and reduced downtime.
    • Cost-efficiency: IO-Link technologies do not require complicated wiring and can significantly reduce material costs compared to traditional hardwired solutions. Additionally, maintenance is easier and more efficient with communication between devices, and there is less need for multiple maintenance employees to manage equipment.
    • Flexibility: With IO-Link technologies, the control system can control and monitor devices even when not attached to specific operator workstations. It enables one control system to manage thousands of devices without needing to rewrite programming to accommodate different machine types.
    • Real-time monitoring: IO-Link technologies provide real-time monitoring of devices, allowing control systems to monitor failures before they occur, making it easier for maintenance teams to manage the shop floor.

How are IO-Link technologies used in automated welding applications?

Automated welding applications have increased efficiencies and continuity in processes, and IO-Link technologies have accelerated these processes further. Automated welding applications have different stages, and each step requires real-time monitoring to ensure the process is efficient and effective. IO-Link technologies have been integrated into various parts of the automated welding process, some of which include:

    1. Positioning and alignment: The welding process starts with positioning and aligning materials such as beams, plates, and pipes. IO-Link sensors can detect the height and gap position of the material before the welding process begins. The sensor sends positional data to the control system as a feedback loop, which then adjusts the positioning system using actuators to ensure optimal weld quality.
    2. Welding arc monitoring: The welding arc monitoring system is another critical application for IO-Link technologies. Monitoring the arc ensures optimal weld quality and runs with reduced interruptions. IO-Link temperature sensors attached to the welding tip help control and adjust the temperature required to melt and flow the metal, ensuring that the welding arc works optimally.
    3. Power supply calibration: IO-Link technologies are essential in calibrating the power output of welding supplies, ensuring consistent quality in the welding process. Detectors attached to the power supply record the energy usage, power output and voltage levels, allowing the control system to adjust as necessary.
    4. Real-time monitoring and alerting: Real-time monitoring and alerting capabilities provided by IO-Link technologies help to reduce downtime where machine health is at risk. The sensors monitor the welding process, determining if there are any deviations from the set parameters. They then communicate the process condition to the control system, dispatching alerts to maintenance teams if an issue arises.

Using IO-Link technologies in automated welding applications has revolutionized the welding industry, providing real-time communication, enhanced data transfer, flexibility, and real-time monitoring capabilities required for reliable processes. IO-Link technologies have been integrated at various stages of automated welding, including positioning and alignment, welding arc monitoring, power supply calibration, and real-time monitoring and alerting. There is no doubt that the future of automated welding is bright. With IO-Link technologies, the possibilities are endless, forging ahead to provide more intelligent, efficient, and reliable welding applications.

Why Choose an IO-Link Ecosystem for Your Next Automation Project?

By now we’ve all heard of IO-Link, the device-level communication protocol that seems magical. Often referred to as the “USB of industrial automation,” IO-Link is a universal, open, and bi-directional communication technology that enables plug-and-play device replacement, dynamic device configuration, centralized device management, remote parameter setting, device level diagnostics, and uses existing sensor cabling as part of the IEC standard accepted worldwide.

But what makes IO-Link magical?

If the list above doesn’t convince you to consider using IO-Link on your next automation project, let me tell you more about the things that matter beyond its function as a communications protocol.

Even though these benefits are very nice, none of them mean anything if the devices connected to the network don’t provide meaningful, relevant, and accurate data for your application.

Evolution of the IO-Link

IO-Link devices, also known as “smart devices,” have evolved significantly over the years. At first, they were very simple and basic, providing data such as the status of your inputs and outputs and maybe giving you the ability to configure a few basic parameters, such as port assignment as an input or an output digitally over IO-Link. Next, came the addition of functions that would improve the diagnostics and troubleshooting of the device. Multi-functionality followed, where you have one device under one part number, and can configure it in multiple modes of operation.

Nothing, however, affected the development of smart devices as much as the introduction of IIoT (Industrial Internet of Things) and the demand for more real-time information about the status of your machine, production line, and production plant starting at a device level. This demand drove the development of smart devices with added features and benefits that are outside of their primary functions.

Condition monitoring

IO-Link supplies both sensor/actuator details and secure information
IO-Link supplies both sensor/actuator details and secure information

One of the most valuable added features, for example, is condition monitoring. Information such as vibration, humidity, pressure, voltage and current load, and inclination – in addition to device primary function data – is invaluable to determine the health of your machine, thus the health of your production line or plant.

IO-Link offers the flexibility to create a controls architecture independent of PLC manufacturer or higher-level communications protocols. It enables you to:

    • use existing low-cost sensor cabling
    • enhance your existing controls architecture by adding devices such as RFID readers, barcode and identification vision sensors, linear and pressure transducers, process sensors, discrete or analog I/O, HMI devices, pneumatic and electro-mechanical actuators, condition monitoring, etc.
    • dynamically change the device configuration, auto-configure devices upon startup, and plug-and-play replacement of devices
    • enable IIOT, predictive maintenance, machine learning, and artificial intelligence

There is no other device-level communications protocol that provides as many features and benefits and is cost-effective and robust enough for industrial automation applications as IO-Link.

Automation Insights: Top Blogs From 2022

It’s an understatement to say 2022 had its challenges. But looking back at the supply chain disruptions, inflation, and other trials threatening success in many industries, including manufacturing, there were practical insights we can benefit from as we dive into 2023. Below are the most popular blogs from last year’s Automation Insights site.

    1. Evolution of Pneumatic Cylinder Sensors

Top 2022 Automation Insights BlogsToday’s pneumatic cylinders are compact, reliable, and cost-effective prime movers for automated equipment. They’re used in many industrial applications, such as machinery, material handling, assembly, robotics, and medical. One challenge facing OEMs, integrators, and end users is how to detect reliably whether the cylinder is fully extended, retracted, or positioned somewhere in between before allowing machine movement.

Read more.

    1. Series: Condition Monitoring & Predictive Maintenance 

Top 2022 Automation Insights BlogsBy analyzing which symptoms of failure are likely to appear in the predictive domain for a given piece of equipment, you can determine which failure indicators to prioritize in your own condition monitoring and predictive maintenance discussions.

Read the series, including the following blogs:

    1. Know Your RFID Frequency Basics

Top 2022 Automation Insights BlogsIn 2008 I purchased my first toll road RFID transponder, letting me drive through and pay my toll without stopping at a booth. This was my first real-life exposure to RFID, and it was magical. Back then, all I knew was that RFID stood for “radio frequency identification” and that it exchanged data between a transmitter and receiver using radio waves. That’s enough for a highway driver, but you’ll need more information to use RFID in an industrial automation setting. So here are some basics on what makes up an RFID system and the uses of different radio frequencies.

Read more.

    1. IO-Link Event Data: How Sensors Tell You How They’re Doing

Top 2022 Automation Insights BlogsI have been working with IO-Link for more than 10 years, so I’ve heard lots of questions about how it works. One line of questions I hear from customers is about the operating condition of sensors. “I wish I knew when the IO-Link device loses output power,” or, “I wish my IO-Link photoelectric sensor would let me know when the lens is dirty.” The good news is that it does give you this information by sending Event Data. That’s a type of data that is usually not a focus of users, although it is available in JSON format from the REST API.

Read more.

    1. Converting Analog Signals to Digital for Improved Performance

Top 2022 Automation Insights BlogsWe live in an analog world, where we experience temperatures, pressures, sounds, colors, etc., in seemingly infinite values. There are infinite temperature values between 70-71 degrees, for example, and an infinite number of pressure values between 50-51 psi.

Read more.

We appreciate your dedication to Automation Insights in 2022 and look forward to growth and innovation in 2023.

IO-Link Changeover: ID Without RFID – Hub ID

When looking at flexible manufacturing, what first comes to mind are the challenges of handling product changeovers. It is more and more common for manufacturers to produce multiple products on the same production line, as well as to perform multiple operations in the same space.

Accomplishing this and making these machines more flexible requires changing machine parts to allow for different stages in the production cycle. These interchangeable parts are all throughout a plant: die changes, tooling changes, fixture changes, end-of-arm tooling, and more.

When swapping out these interchangeable parts it is crucial you can identify what tooling is in place and ensure that it is correct.

ID without RFID

When it comes to identifying assets in manufacturing today, typically the first option companies consider is Radio-Frequency Identification (RFID). Understandably so, as this is a great solution, especially when tooling does not need an electrical connection. It also allows additional information beyond just identification to be read and written on the tag on the asset.

It is more and more common in changeover applications for tooling, fixtures, dies, or end-of-arm tooling to require some sort of electrical connection for power, communication, I/O, etc. If this is the case, using RFID may be redundant, depending on the overall application. Let’s consider identifying these changeable parts without incurring additional costs such as RFID or barcode readers.

Hub ID with IO-Link

In changeover applications that use IO-Link, the most common devices used on the physical tooling are IO-Link hubs. IO-Link system architectures are very customizable, allowing great flexibility to different varieties of tooling when changeover is needed. Using a single IO-Link port on an IO-Link master block, a standard prox cable, and hub(s), there is the capability of up to: 

    • 30 Digital Inputs/Outputs or
    • 14 Digital Inputs/Outputs and Valve Manifold Control or
    • 8 Digital Inputs/Outputs and 4 Analog Voltage/Current Signals or
    • 8 Analog Input Signals (Voltage/Current, Pt Sensor, and Thermocouple)

When using a setup like this, an IO-Link 1.1 hub (or any IO-Link 1.1 device) can store unique identification data. This is done via the Serial Number Parameter and/or Application Specific Tag Parameter. They act as a 16- or 32-byte memory location for customizable alphanumeric information. This allows for tooling to have any name stored within that memory location. For example, Fixture 44, Die 12, Tool 78, EOAT 123, etc. Once there is a connection, the controller can request the identification data from the tool to ensure it is using the correct tool for the upcoming process.

By using IO-Link, there are a plethora of options for changeover tooling design, regardless of various I/O requirements. Also, you can identify your tooling without adding RFID or any other redundant hardware. Even so, in the growing world of Industry 4.0 and the Industrial Internet of Things, is this enough information to be getting from your tooling?

In addition to the diagnostics and parameter setting benefits of IO-Link, there are now hub options with condition monitoring capabilities. These allow for even more information from your tooling and fixtures like:

    • Vibration detection
    • Internal temperature monitoring
    • Voltage and current monitoring
    • Operating hours counter

Flexible manufacturing is no doubt a challenge and there are many more things to consider for die, tooling and fixture changes, and end-of-arm tooling outside of just ID. Thankfully, there are many solutions within the IO-Link toolbox.

For your next changeover, I recommend checking out Non-Contact Inductive Couplers Provide Wiring Advantages, Added Flexibility and Cost Savings Over Industrial Multi-Pin Connectors for a great solution for non-contact connectivity that can work directly with Hub ID.

IO-Link Safety: What It Is and Isn’t

Comparing “IO-Link” and “Safety” to “IO-Link Safety”

There are many I/O blocks that have “IO-Link” and “Safety” in their descriptions, which can cause some confusion about which safety features they include. Here’s an overview of different safety-named blocks and how they compare to IO-Link Safety.

Safety Network Blocks

These blocks have I/O ports that use Pin 4 and Pin 2 as OSSD signals (safety ports). OSSD—output switching signal devices—send 24-volt signals over two wires to confirm that a device is operating in a safe condition. If 0 volts are detected in either signal, besides their safety-checking 0-volt pulses, it’s read as a safety event that signals the machine to go into a safe state. Safety network blocks are only for standard (non-network) safety devices. These blocks communicate directly back to a Safety Controller over safety protocols like CIP Safety, PROFIsafe, etc. These blocks typically can monitor between 8-16 standard safety devices. There is no intelligence built into the safety devices.

Safety Network Blocks with IO-Link

Blocks in this category usually have a mixture of I/O ports on them. The ports can range from standard I/O to standard IO-Link communication, and in addition, include ports that use Pin 4 and Pin 2 as OSSD signals (safety ports). These blocks communicate over the safety protocols with only a few ports to connect standard (non-network) safety devices. There is some versatility with these blocks since you can wire standard sensors, IO-Link devices, and safety devices to it. The drawback is, you will always run short of the port style you need and, in the end, use more blocks to cover either the safety or IO-Link needs of the application. There is no intelligence built into the safety devices.

Safety over IO-Link Blocks

In this system/architecture, there are standard IO-Link Masters communicating to the Safety PLCs/Controllers over standard protocols like EtherNet/IP, PROFINET, etc. Connected to the IO-Link Ports of these Masters are Safety over IO-Link devices, currently limited to only Safety over IO-Link hubs. The Safety PLCs/Controllers communicate via safety protocols like PROFIsafe to the standard IO-Link Master, and then using the IO-Link communication channel, they bridge the gap to the Safety over the IO-Link hub via the “black channel.” These Safety over IO-Link hub’s ports use Pin 4 and Pin 2 as OSSD signals (safety ports), so standard (non-network) safety devices can be connected. This system provided a “gap filler” while IO-Link Safety was being developed. In this system/architecture, the standard IO-Link Masters allowed standard IO-Link devices and Safety over IO-Link hubs to be connected to any ports. This brought even more versatility to an application and the beginnings of the benefits of IO-Link. Still, there is no intelligence built into the safety devices.

IO-Link Safety

IO-Link Safety adds a safety communication layer to IO-Link. The difference between this and Safety over IO-Link is that this safety layer applies to both the IO-Link Master and IO-Link Safety devices. Within a CIP Safety or PROFIsafe network, the safety communication protocol has top priority over standard EtherNet/IP or PRIFONET data if both are existing on the same physical network. The same is true for IO-Link Safety: both standard and safety IO-Link protocols can exist on the same physical cable between the IO-Link Master ports and IO-Link Safety devices, with IO-Link Safety carrying the top priority. For a deep dive into the IO-Link Safety protocol, I suggest visiting the IO-Link Consortium’s website at io-link.com. In this system/architecture, you have IO-Link Safety Masters, which communicate to the Safety PLCs/Controllers over safety protocols like CIP Safety, PROFIsafe, etc. The ports on the Masters can utilize Pin 4 and Pin 2 as OSSD signals (safety ports), so standard (non-network) safety devices can be connected. Pin 4 can also be used to carry standard IO-Link and IO-Link Safety communication to standard IO-Link devices and IO-Link Safety devices, respectively. This allows for the most versatile safety solution in the market–IO-Link Safety Masters that can accept standard (non-network) safety devices, standard IO-Link devices, and IO-Link Safety devices. Intelligence in the IO-Link Safety devices is now available.

Benefits of IO-Link Safety

    • IO-Link Safety devices are fieldbus neutral: you just need to specify the IO-Link Safety Master to match the Safety PLCs/Controllers protocol.
    • IO-Link Safety Master port versatility: standard (non-network) safety devices, standard IO-Link devices, and IO-Link Safety devices can be connected.
    • Parameter storage: standard IO-Link and IO-Link Safety device’s parameters can be stored for ease of device replacement.
    • Smart IO-Link Safety device data: more data available, like internal temperature, humidity, number of cycles, power consumption, diagnostics, etc.
    • Simplified wiring: IO-Link Safety devices are still connected to the IO-Link Master port with a standard 3 to 4 conductor cable.
    • IIoT fit: IO-Link Safety gives more visibility to upper-level systems like SCADA, allowing safety device-level monitoring.

I am looking forward to seeing how quickly IO-Link Safety will be accepted, with how IO-Link numbers have skyrocketed over the last few years. The future looks great for IO-Link with IO-Link Safety, IO-Link Wireless and in the future, Single-Pair Ethernet (SPE). With all these new capabilities, what application can’t IO-Link support?

IO-Link Event Data: How Sensors Tell You How They’re Doing

I have been working with IO-Link for more than 10 years, so I’ve heard lots of questions about how it works. One line of questions I hear from customers is about the operating condition of sensors. “I wish I knew when the IO-Link device loses output power,” or, “I wish my IO-Link photoelectric sensor would let me know when the lens is dirty.” The good news is that it does give you this information by sending Event Data. That’s a type of data that is usually not a focus of users, although it is available in JSON format from the REST API.

There are three types of IO-Link data:

      • Process Data – updated cyclically, it’s important to users because it contains the data for use in the running application, like I/O change of states or measurement values like temperature and position, etc.
      • Parameter Data – updated acyclically, it’s important to users because it’s the mechanism to read and write parameter values like setpoints, thresholds, and configuration settings to the sensor, and for reading non-time critical values like operating hours, etc.
      • Event Data – updated acyclically, it’s important to users because it provides immediate updates on device conditions.

Let’s dig deeper into Event Data. An Event is a status update from the IO-Link device when a condition is out of its normal range. The Event is labeled as a Warning or Error based on the severity of the condition change.

When an Event occurs on the IO-Link device, the device sets the Event Flag bit in the outgoing data packet to the IO-Link Master. The Master receives the Event Flag and then queries the IO-Link device for the Event information.

It is important to note that this is a one-time data message. The IO-Link device only sends the Event Flag at the moment the condition is out of range, and then again when the condition is back in range.

Event Data Types, Modes, and Codes

Event Data has three following three components:

      • Event Type – categorized in three ways
        • Notification – a simple event update; nothing is abnormal with the IO-Link device
        • Warning – a condition is out of range and risks damaging the IO-Link device
        • Error – a condition is out of range and is affecting the device negatively to the point that it may not function as expected
      • Event Mode – categorized in three ways
        • Event notice – usually associated with Event Type notifications, message will not be updated
        • Event appears – the condition is now out of range
        • Event disappears – the condition is now back in range
      • Event Code
        • A two-byte Hex code that represents the condition that is out of range

IO-Link condition monitoring sensor

To bring all these components together, let’s look at a photoelectric IO-Link sensor with internal condition monitoring functions and see what Events are available for it in this device manual screenshot. This device has Events for temperature (both warning and error), voltage, inclination (sensor angle is out of range), vibration, and signal quality (dirty lens).

By monitoring these events, you have a better feel for the conditions of your IO-Link device. Along with helping you identify immediate problems, this can help you in planning preventive and planned maintenance.

An IO-Link condition monitoring sensor uses Event Data similarly to report when conditions exceed the thresholds that you have set. For example, when the vibration level exceeds the threshold value, the IO-Link device sends the Warning event flag and the IO-Link Master queries for the event data. The event data consists of an Event Type, an Event Mode, and an Event Code that represents the specific alarm condition that is out of range. Remember this is a one-time action; the IO-Link sensor will not report this again until the value is in an acceptable range.

When the vibration level is back in range, the alarm condition is no longer present in the IO-Link device, the process repeats itself. In this case the Event Type and Event Code will be the same. The only change is that the Event Mode will report Event Disappears.

Within the IO-Link Specification there is a list of defined Event Codes that are common across all vendors. There is also a block of undefined Event Code values that allow vendors to create Event Codes that are unique to their specific device.

“I wish the IO-Link device would let me know….” In the end, the device might be telling you what you want to know, especially if the device has condition monitoring functions built into it. If you want to know more about condition monitoring in your IO-Link devices, check out the Event section in the vendor’s manuals so you can learn how to use this information.

Control Meets IIoT, Providing Insights into a New World

In manufacturing and automation control, the programmable logic controller (PLC) is an essential tool. And since the PLC is integrated into the machine already, it’s understandable that you might see the PLC as all that you need to do anything in automation on the manufacturing floor.

Condition monitoring in machine automation

For example, process or condition monitoring is emerging as an important automation feature that can help ensure that machines are running smoothly. This can be done by monitoring motor or mechanical vibration, temperature or pressure. You can also add functionality for a machine or line configuration or setup by adding sensors to verify fixture locations for machine configuration at changeovers.

One way to do this is to wire these sensors to the PLC and modify its code and use it as an all-in-one device. After all, it’s on the machine already. But there’s a definite downside to using a PLC this way. Its processing power is limited, and there are limits to the number of additional processes and functions it can run. Why risk possible complications that could impact the reliability of your control systems? There are alternatives.

External monitoring and support processes

Consider using more flexible platforms, such as an edge gateway, Linux, and IO-Link. These external sources open a whole new world of alternatives that provide better reliability and more options for today and the future. It also makes it easier to access and integrate condition monitoring and configuration data into enterprise IT/OT (information technology/operational technology) systems, which PLCs are not well suited to interface with, if they can be integrated at all.

Here are some practical examples of this type of augmented or add-on/retrofit functionality:

      • Motor or pump vibration condition monitoring
      • Support-process related pressure, vibration and temperature monitoring
      • Monitoring of product or process flow
      • Portable battery based/cloud condition monitoring
      • Mold and Die cloud-based cycle/usage monitoring
      • Product changeover, operator guidance system
      • Automatic inventory monitoring warehouse system

Using external systems for these additional functions means you can readily take advantage of the ever-widening availability of more powerful computing systems and the simple connectivity and networking of smart sensors and transducers. Augmenting and improving your control systems with external monitoring and support processes is one of the notable benefits of employing Industrial Internet of Things (IIoT) and Industry 4.0 tools.

The ease of with which you can integrate these systems into IT/OT systems, even including cloud-based access, can dramatically change what is now available for process information-gathering and monitoring and augment processes without touching or effecting the rudimentary control system of new or existing machines or lines. In many cases, external systems can even be added at lower price points than PLC modification, which means they can be more easily justified for their ROI and functionality.

IO-Link Benefits in Robotic Weld Cell Tooling

By Scott Barhorst

Working previously as a controls engineering manager in robotic welding, I have seen some consistent challenges when designing robotic weld cell systems.

For example, the pre-engineered-style welding cells I’ve worked with use many types of tooling. At the same time, space for tooling and cabling is limited, and so is the automation on board, with some using PLC function and others using a robot controller to process data.

One approach that worked well was to use IO-Link in the systems I designed. With its simple open fieldbus communication interface and digital transmission, it brought a number of benefits.

    1.  IO-Link’s digital signals aren’t affected by noise, so I could use smart sensors and connect them with unshielded 4-pin cables.
    2.  Expandability was easy, either from the Master block or by adding discrete I/O modules.
    3.  IO-Link can use the ID of the block to identify the fixture it is associated with to make sure the correct fixture is in the correct location.
    4.  Cabling is simplified with IO-Link, since the IO-Link Master can control both inputs, outputs, and control valve packs. That means that the only cables needed will be 24V power, Ethernet, weld ground (depending on the system), and air.
    5.  Fewer cables means less cost for cables and installation, cable management is improved, and there are fewer cables to run through a tailstock or turntable access hole.

One system I designed used 1 IO-Link Master block, 3 discrete I/O modules, and 1 SMC valve manifold controlled via IO-Link. This tooling had 16 clamps and 10 sensors, requiring 42 total inputs and control of 16 valves. The system worked very well with this setup!

An additional note: It’s good to think beyond the process at hand to how it might be used in the future. A system built on IO-Link is much more adaptable to different tooling when a change-over is needed. Click here to read more about how to use IO-Link in welding environments.

 

 

 

 

 

3 Easy Options to Get Started With IIoT in 2022

The Industrial Internet of Things (IIoT) may seem large, intimidating, and challenging to implement; however, new systems and solutions will eliminate the perceived barriers for entry. As we wrap up the year and make plans for 2022, now is a great time to resolve to modernize your facility.

Do you have a process, system or machine that has outlived its life expectancy for many years or even decades and isn’t up to current IIoT standards? Great news: you have several options for updating.

Traditional approach

The traditional approach allows you to use your current controller to output your information to your existing database. If you want to try IIoT on your current setup and your controller cannot be modified, a self-contained system will allow for ultimate flexibility. It will provide you with access to the data based off an extra layer of sensing with a focus on condition monitoring. This approach is the least expensive route, however, if database access is restricted the following options may be better choices.

Cloud-based current industry standard

A second option is to use a portable monitoring system that has a condition monitoring sensor. It is essentially five sensors in one package that can hook up to a system using the cellular network to report data to a secure cloud database. This approach is useful in remote locations or where local network access is limited. If you have a problem area, you can apply this temporarily to collect enough data, enabling you to implement predictive maintenance.

Local-based current industry standard

A local self-contained system is a great solution if a cloud database is not desired or allowed. Systems such as a Condition Monitoring Toolkit allow for recording of devices onto the local memory or USB drive. Additionally, multiple alarm set points can be emailed or extracted locally. This approach is best for testing existing machines to help with predictive maintenance, to improve a process, or even to prevent a failure.

All three of these options require data management and analysis to improve your processor and to remedy problematic areas. Using any of them is an opportunity to test the IIoT waters before fully diving in. Extrapolating the results into problem-solving solutions can allow you to expand IIoT to the rest of your facilities in a cost-effective manner.

IO-Link: End to Analog Sensors

With most sensors now coming out with an IO-Link output, could this mean the end of using traditional analog sensors? IO-Link is the first IO technology standard (IEC 61131-9) for communications between sensors and actuators on the lower component level.

Analog sensors

A typical analog sensor detects an external parameter, such as pressure, sound or temperature, and provides an analog voltage or current output that is proportional to its measurement. The output values are then sent out of the measuring sensor to an analog card, which reads in the samples of the measurements and converts them to a digital binary representation which a PLC/controller can use. At both ends of the conversion, on the sensor side and the analog card side, however, the quality of the transmitted value can be affected. Unfortunately, noise and electrical interferences can affect the analog signals coming out of the sensor, degrading it over the long cable run. The longer the cable, the more prone to interference on the signal. Therefore, it’s always recommended to use shielded cables between the output of the analog sensor to the analog card for the conversion. The cable must be properly shielded and grounded, so no ground loops get induced.

Also, keep in mind the resolution on the analog card. The resolution is the number of bits the card uses to digitalize the analog samples it’s getting from the sensor. There are different analog cards that provide 10-, 12-, 14-, and 16-bit value representations of the analog signal. The more digital bits represented, the more precise the measurement value.

IO-Link sensor—less interference, less expensive and more diagnostic data

With IO-Link as the sensor output, the digital conversion happens at the sensor level, before transmission. The measured signal gets fed into the onboard IO-Link chipset on the sensor where it is converted to a digital output. The digital output signal is then sent via IO-Link directly to a gateway, with an IO-Link master chipset ready to receive the data. This is done using a standard, unshielded sensor cable, which is less expensive than equivalent shielded cables. And, now the resolution of the sensor is no longer dependent on the analog card. Since the conversion to digital happens on the sensor itself, the actual engineering units of the measured value is sent directly to the IO-Link master chipset of the gateway where it can be read directly from the PLC/controller.

Plus, any parameters and diagnostics information from the sensor can also be sent along that same IO-Link signal.

So, while analog sensors will never completely disappear on older networks, IO-Link provides good reasons for their use in newer networks and machines.

To learn about the variety of IO-Link measurement sensors available, read the Automation Insights post about ways measurement sensors solve common application challenges. For more information about IO-Link and measurement sensors, visit www.balluff.com.