IO-Link Simplifies Connectivity on Robotic End-Effectors

In my last two blogs, Rise of the Robots: IO-Link… and Realize Productivity Gains with Smart Robotic Tooling , I shared how implementing IO-Link and incorporating pneumatic and electric smart grippers can help maximize your use of robotics in your applications. In this blog, I will discuss how you can get more from your robots through expanded use of end-effectors in your applications.

As pneumatic air and vacuum systems have been an integral part of automation projects of the past, these systems can also benefit from gains in intelligence moving forward. Smart vacuum generators can provide feedback on the operation of the system; for example, if cups are starting to wear or fail, the smart devices can be used to provide estimates on remaining service life through predictive maintenance calculations. Key components like process sensors, variable regulators, pneumatic grippers, and pneumatic valve manifolds are available with IO-Link technology at a reasonable price. More importantly, these devices dramatically simplify integration, installation, and maintenance with built-in diagnostics and parameterization tools. By utilizing smart pneumatics, we substantially reduce wiring complexity in new installations and expedite downtime repairs.

Easier I/O and Connectivity on Robotic End-Effectors

Figure 1 – An industrial robot with IO-Link I/O hubs and valve manifold control on the EoAT.

However, most people avoid adding these types of smart technologies to end-effectors due to cable management issues or the effort to put high-flex Ethernet or many conductors into the robot dress pack. With IO-Link and its use of standard conductors for communication, integrators and machine builders have been able to install already available conductors in the arm or use lower-cost high-flex sensor cables to communicate with IO-Link smart devices on the end of arm tooling (EoAT).

Smart I/O hubs allow for standard sensors to be used with simplified wiring and on large tooling, valve manifolds can be mounted and controlled on the EoAT (Figure 1). If tool change is needed for the application, non-contact wireless connectivity can send power and signal across an airgap, increasing application capabilities and functionality.

Manufacturers big and small have gained impressive intelligence at the robot’s end-effector using IO-Link electric grippers, smart pneumatics and tooling enabled with IO-Link sensors. As you look to your next robotic automation project, consider how you could reduce integration efforts, improve part quality, enhance production flexibility, gain more process visibility, and increase application capabilities of EoAT. To realize all the benefits of an industrial robot system and earn productivity gains in machine tending, assembly and material handling applications, smart grippers, smart sensors, and smart tooling (enabled by IO-Link) are a necessary part of your next smart factory project.

Realize Productivity Gains with Smart Robotic Tooling

In my last blog post, I shared how implementing IO-Link can expand visibility into your robot implementations and secure a high ROI. In this blog, I will share how you can better capitalize on your robot utilization and gain productivity with pneumatic and electric smart grippers.

Using Pneumatic & Electric Smart Grippers

Figure 1 – Sensors used in grippers provide position and open/closed feedback of the jaw. Photo courtesy of Balluff Worldwide.

In traditional pneumatic gripper applications, sensors are often not utilized. Proper function is assumed, i.e., the jaw opened and closed properly based on the signal sent to the air valve. This can cause unnecessary collisions or process failures due to stuck/worn mechanical components, leaks in the pneumatic lines, or small variations in the process cycle. Adding sensors to the grippers (Figure 1), creates a closed loop and minimal discrete feedback, like open or closed jaw, is provided. With the addition of smart sensors, we can monitor exact gripper jaw position and provide application diagnostics improving the capabilities of the robot end-effector. And finally, gripper intelligence features are expanded even further with electric grippers, giving precise control over the motion profile of the tool and providing detailed condition data on the equipment.

Regularly for smart sensors and smart grippers, these commands and the data are handled via IO-Link communication, which allows for process data, parameter data, and event data to be shared with the PLC and monitored via the Industrial Internet of Things (IIoT) connections. By utilizing IO-Link, both electric and pneumatic grippers can be enabled with intelligence to improve robot implementations.

Part Quality, Inspection, Delicate Part Handling & Measurement

Some of the most common applications like bin-picking, part stacking, or blank de-stacking make assumptions about the part being handled. But the first assumption many people make is that the robot is holding a part. Without sensor verification that the part is in place, how can it be guaranteed that the process is running without defect? And a second assumption that the correct part was loaded into the machine by the operator can cause hundreds of part defects if continued without verification. It is vital that the right part is loaded into the equipment every time, and as many parts look very similar manual inspection isn’t always accurate.  A gripper is an excellent place to gauge and inspect parts as it is physically touching the part. This is done by utilizing an analog position measurement sensor to determine the distance change of the gripper jaw. In addition to this, the position measurement sensor also can provide feedback for tactile gripping applications when handling delicate or precise parts. By utilizing position sensing for inspection and handling of the part, we can improve part quality and reduce production defects.

Production Flexibility, Format Change & Part Identification

In addition to quality inspection, by measuring the part, we can identify the part and make automation changes on-the-fly based upon this information, creating much higher levels of flexibility and making it possible for in-process format change. With one piece of equipment and the utilization of smart sensors on pneumatic grippers or smart electric grippers, more product can be produced. With higher efficiencies manufacturers can realize significant productivity gains.

Figure 2 – GEH6060IL-03-B servo electric gripper with delicate or elastic parts. Photo courtesy of Zimmer Group US, Inc.

In my next blog, I will discuss how expanding the use of end-effectors adds flexibility and are now easier than ever to include in your robotic applications.

IO-Link Boosts Plant Productivity

In my previous blog, Using Data to Drive Plant Productivity, I categorized reasons for downtime in the plant and also discussed how data from devices and sensors could be useful in boosting productivity on the plant floor. In this blog, I will focus on where this data is and how to access it. I also touched on the topic of standardizing interfaces to help boost productivity – I will discuss this topic in my future blog.

Sensor technology has made significant progress in last two decades. The traditional transistor technology that my generation learned about is long gone. Almost every sensor now has at least one microchip and possibly even MEMs chips that allow the sensor to know an abundance of data about itself and the environment it which it resides. When we use these ultra-talented sensors only for simple signal communication, to understand presence/absence of objects, or to get measurements in traditional analog values (0-20mA, 0-10V, +5/-5V and so on), we are doing disservice to these sensors as well as keeping our machines from progressing and competing at higher levels. It is almost like choking the throat of the sensor and not letting it speak up.

To elaborate on my point, let’s take following two examples: First, a pressure sensor that is communicating 4-20mA signal to indicate pressure value. Now, that sensor can not only read pressure value but, more than likely, it can also register the ambient temperatures and vibrations. Although, the sensor is capable of understanding these other parameters, there is no way for it to communicate that information to the higher level controller. Due to this lack of ambient information, we may not be able to prevent some eminent failures. This is because of the choice of communication technology we selected – i.e. analog signal communication.

For the second example, let us take a simple photoeye sensor that only communicates presence/absence through discrete input and 0/1 signal. This photoeye also understands its environment and other more critical information that is directly related to its functionality, such as information about its photoelectric lens. The sensor is capable of measuring the intensity of re-emitted light, because based on that light intensity it is determining presence or absence of objects. If the lens becomes cloudy or the alignment of the reflector changes, it directly impacts the remitted light intensity and leads to sensor failure. Due to the choice of digital communication, there is no way for the sensor to inform the higher level control of this situation and the operator only learns of it when the failure happens.

If  a data communication technology, such as IO-Link, was used in these scenarios instead of signal communication, we could unleash these sensors to provide useful information about themselves as well as about their environment. If we collect this data or set alerts in the sensor for the upper/lower limits on this type of information, the maintenance teams would know in advance about the possible failures and prevent these failures to avoid eminent downtime.

Collecting this data at appropriate frequencies could help build a more relevant database and demonstrate patterns for the next generation of machine learning and predictive maintenance initiatives. This would be data driven continuous improvement to prevent failures and boost productivity.

The information collected from sensors and devices – so called smart devices – not only helps end users of automation to boost their plant’s productivity, but also helps machine builders to better understand their own machine usage and behaviors. Increased knowledge improves the designs for the next generation of machines.

If we utilized these smart sensors and devices at our change points in the machine, it would help fully or partially automate the product change-overs. With IO-Link as a technology, these sensors can be reconfigured and re-purposed for different applications without needing different sensors or manual tunings.

IO-Link technology has a built in feature called “automatic parameterization” that helps reduce plant down-time when sensors need replaced. This feature stores IO-Link devices’ configuration on the master port as well as all the configuration is also persistent in the sensor. Replacement is as simple as connecting the new sensor of the same type, and the IO-Link master downloads all the parameters and  replacement is complete.

Let’s recap:

  1. IO-Link unleashes a sensor’s potential to provide information about its condition as well as the ambient conditions, enabling condition monitoring, predictive maintenance and machine learning.
  2. IO-Link offers remote configuration of devices, enabling quick and automated change overs on the production line for different batches, reducing change over times and boosting plant productivity.
  3. IO-Link’s automatic parameterization feature simplifies device replacement, reducing unplanned down-time.

Hope this helps boost productivity of your plant!

Rise of the Robots: IO-Link Maximizes Utilization, Saves Time and Money

Manufacturers around the world are buying industrial robots at an incredible pace. In the April 2020 report from Tractia & Statista, “the global market for robots is expected to grow at a compound annual growth rate (CAGR) of around 26 percent to reach just under 210 billion US dollars by 2025.” But are we gaining everything we can to capitalize on this investment when the robots are applied? Robot utilization is a key metric for realizing return-on-investment (ROI). By adding smart devices on and around the robot, we can improve efficiencies, add flexibility, and expand visibility in our robot implementations. To maximize robot utilization and secure a real ROI there are key actions to follow beyond only enabling a robot; these are: embracing the open automation standard IO-Link, implementing smart grippers, and expanding end-effector application possibilities.

In this blog, I will discuss the benefits of implementing IO-Link. Future blog posts will concentrate on the other actions.

Why care about IO-Link?

First, a quick definition. IO-Link is an open standard (IEC 61131-9) that is more than ten years old and supported by close to 300 component suppliers in manufacturing, providing more than 70 automation technologies (figure 1). It works in a point-to-point architecture utilizing a central master with sub-devices that connect directly to the master, very similar to the way USB works in the PC environment. It was designed to be easy to integrate, simple to support, and fast to implement into manufacturing processes.

Figure 1 – The IO-Link consortium has close to 300 companies providing more than 70 automation technologies.

Using standard cordsets and 24Vdc power, IO-Link has been applied as a retrofit on current machines and designed into the newest robotic work cells. Available devices include pneumatic valve manifolds, grippers, smart sensors, I/O hubs, safety I/O, vacuum generators and more. Machine builders and equipment OEMs find that IO-Link saves them dramatically on engineering, building and the commissioning of new machines. Manufacturers find value in the flexibility and diagnostic capabilities of the devices, making it easier to troubleshoot problems and recover more quickly from downtime. With the ability to pre-program device parameters, troublesome complex-device setup can be automated, reducing new machine build times and reducing part replacement times during device failure on the production line.

Capture Data & Control Automation

Figure 2 – With IIoT-ready IO-Link sensors and masters, data can be captured without impacting the automation control.

The final point of value for robotic smart manufacturing is that IO-Link is set up to support applications for the Industrial Internet of Things (IIoT). IO-Link devices are IIoT ready, enabling Industry 4.0 projects and smart factory applications. This is important as predictive maintenance and big-data applications are only possible if we have the capabilities of collecting data from devices in, around and close to the production. As we look to gain more visibility into our processes, the ability to reach deep into your production systems will provide major new insights. By integrating IIoT-ready IO-Link devices into robotic automation applications, we can capture data for future analytics projects while not interrupting the control of the automation processes (figure 2).

Tire Manufacturing – IO-Link is on a Roll

Everyone working in the mobility industry knows that the tire manufacturing process is divided up into five areas throughout a large manufacturing plant.

    1. Mixing
    2. Tire prep
    3. Tire build
    4. Curing and molds
    5. Final inspection

Naturally,  conveyors, material handling, and AGV processes throughout the whole plant.

All of these areas have opportunities for IO-Link components, and there are already some good success stories for some of these processes using IO-Link.

A major opportunity for IO-Link can be found in the curing press area. Typically, a manufacturing plant will have about 75 – 100 dual cavity curing presses, with larger plants having  even more. On these tire curing presses are many inputs and outputs in analog signals. These signals can be comprised of pressure switches, sensors, pneumatic, hydraulic, linear positioning, sensors in safety devices, thermo-couples and RTD, flow and much more.

IO-Link provides the opportunity to have all of those inputs, outputs and analog devices connected directly to an IO-Link master block and hub topography. This makes it not only easier to integrate all of those devices but allows you to easily integrate them into your PLC controls.

Machine builders in this space who have already integrated IO-Linked have discovered how much easier it is to lay out their machine designs, commission the machines, and decrease their costs on machine build time and installations.

Tire manufacturing plants will find that the visual diagnostics on the IO-Link masters and hubs, as well as alarms and bits in their HMIs, will quickly help them troubleshoot device problems. This decreases machine downtime and delivers predictive maintenance capabilities.

Recently a global tire manufacturer getting ready to design the curing presses for a new plant examined the benefits of installing IO-Link and revealed a cost savings of more than $10,000 per press. This opened their eyes to evaluating IO-Link technology even more.

Tire Manufacturing is a perfect environment to present IO-Link products. Many tire plants are looking to upgrade old machines and add new processes, ideal conditions for IO-Link. And all industries are interested in ways to stretch their budget.

 

Non-Contact Inductive Couplers Provide Wiring Advantages, Added Flexibility and Cost Savings Over Industrial Multi-Pin Connectors

Today, engineers are adding more and more sensors to in-die sensing packages in stamping applications. They do so to gain more information and diagnostics from their dies as well as reduce downtime. However, the increased number of sensors also increases the number of electric connections required in the automation system. Previously, the most common technique to accommodate large numbers of sensor in these stamping applications was with large, multi-pin connectors. (Figure 1)

Figure 1
Figure 1: A large multi-pin connector has been traditionally used in the past to add more electronics to a die.

The multi-pin connector approach works in these applications but can create issues, causing unplanned downtime. These problems include:

    1. Increased cost to the system, not only in the hardware itself, but in the wiring labor. Each pin of the connector must be individually wired based on the sensor configuration of each particular die. Depending on the sensor layout of the die, potentially each connector could need to be wired differently internally.
    2. A shorter life span for the multi-pin connector due to the tough stamping environment. The oil and lubrication fluids constantly spraying on the die can deteriorate the connectors plastic housings. Figure 1 shows the housing starting to come apart. When the connector is unplugged, these devices are not rated for IP67 and dirt, oil, and/or other debris can build up inside the connector.
    3. Cable damage during typical die change out. Occasionally, users forget to unplug the connectors before pulling the die out and they tear apart the device. If the connector is unplugged and left hanging off the die, it can be run over by a fork truck. Either way, new connectors are required to replace the damaged ones.
    4. Bent or damaged pins. Being mechanical in nature, the pin and contact points will wear out over time by regular plugging and unplugging of these devices.
    5. A lack of flexibility. If an additional sensor for the die is required, additional wiring is needed. The new sensor input needs to be wired to a free pin in the connector and a spare pin may not be available.
Figure 2
Figure 2: Above is a typical set up using these multi-pin connectors hard-wired to junction boxes.

Inductive couplers (non-contact) are another solution for in-die sensors connecting to an automation system. With inductive couplers, power and data are transferred across an air gap contact free. The system is made up of a base (transmitter) and remote (receiver) units. The base unit is typically mounted to the press itself and the remote unit to the die. As the die is set in place, the remote receives power from the base when aligned and exchanges data over a small air gap.

The remote and base units of an inductive coupler pair are fully encapsulated and typically rated IP67 (use like rated cabling). Because of this high ingress protection rating, the couplers are not affected by coolant, die lubricants, and/or debris in a typical stamping application. Being inherently non-contact, there is no mechanical wear and less unplanned downtime.

When selecting an inductive coupler, there are many considerations, including physical form factors (barrel or block styles) and functionality types (power only, input only, analog, configurable I/O, IO-Link, etc…). IO-Link inductive couplers offer the most flexibility as they allow 32 bytes of bi-direction data and power. With the large data size, there is a lot of room for future expansion of additional sensors.

Adding inductive couplers can be an easy way to save on unexpected downtime due to a bad connector.

fig 3
Figure 3: A typical layout of an IO-Link system using inductive couplers in a stamping application.

How to Take Advantage of IO-Link Parameter Data

IO-Link data packets contain parameter data of an IO-Link slave device that is acyclic and is only transferred when read or write is requested by the machine controller. Having parameter data available on a device is not new or groundbreaking; however, the main advantage of IO-Link parameter data is that it is directly accessible by the machine controller, and it is dynamic, meaning you do not have to take the device offline to change its parameters or configuration. Parameter data determines how flexible or configurable an IO-Link slave device is. Its content will be different from device to device and manufacturer to manufacturer, a differentiator when choosing the right device for your application. We all know that not all IO-Link devices are created equal.

So how can you take advantage of parameter data?

Automatic machine configuration

Imagine if your machine could automatically configure itself upon first power-up? Yes, it is possible. Because IO-Link parameter data is accessible by the machine controller, i.e., the PLC or PAC, one can write a routine/program that first verifies the correct device is connected to the correct port of the IO-Link master, request a parameter read, compare the parameter content to the desired configuration in the program, and overwrite the current device parameter set if necessary. Why would someone do this? Well, if you are an OEM machine builder building ten of the same machines for one end customer, it would be a worthwhile investment in programming development to have IO-Link devices configured automatically. This method would eliminate the need for manual machine parameterization and result in cost savings. Examples of typical configuration would be changing the pin assignment of an IO-Link freely configurable discrete input/output hub as an input or an output, machine home position or offset of an IO-Link linear transducer, set points of an IO-Link pressure transducer, set points of an IO-Link laser distance sensor, and so on.

Recipe change

Another way to take advantage of IO-Link parameter data is to have the machine controller automatically change device configuration based on recipe change. This would eliminate the need for an operator to manually change device parameters, thus saving time and minimizing human error, especially if the device is not easily accessible by a human.

Maintenance

Having direct access to device parameters by the machine controller also enables OEMs to simplify their machines’ serviceability. For component replacement, all the maintenance personnel would have to replace a damaged device with a new device and walk away, eliminating the need for specialized training, software, or hardware.

Some manufacturers add special functions to their IO-Link masters to enable automatic backup and restoration of IO-Link slave device parameters, making replacement of components as easy as plug and play. This function would eliminate the need for OEMs to create custom programs or logic in their PLCs to restore parameter sets on a device automatically.

How to

So how would I do this? Because parameter data is accessible by the machine controller, implementation of auto configuration differs based on what brand of controller you are using. I will mention a few of the most popular.

  • Allen Bradley – For the Allen Bradley family of PLCs, you would use an explicit  instruction to read and write IO-Link device parameters.
  • Siemens -For the Siemens family of PLCs, you would use a standard function block named “FB_IOL_CALL”.

As you can see, every PLC or machine controller manufacturer and their flavor of IDE (Integrated Development Environment) will have their unique way of accessing IO-Link device parameter set. It is best to consult with both manufacturers and review IO-Link devices and PLCs to better understand how to set the read and write parameters of an IO-Link slave device.

Conclusion

Having direct access to device parameters and being able to change them without taking the device offline or needing special software or hardware, and implement it at a device level is game-changing. It opens doors for time and cost savings in design, integration, operation, and serviceability of machines. It is different from what we are used to, so don’t be afraid to think outside of the box and jump in with both feet.

 

Building Blocks of the Smart Factory Now More Economical, Accessible

A smart factory is one of the essential components in Industry 4.0. Data visibility is a critical component to ultimately achieve real-time production visualization within a smart factory. With the advent of IIoT and big-data technologies, manufacturers are finally gaining the same real-time visibility into their enterprise performance that corporate functions like finance and sales have enjoyed for years.

The ultimate feature-rich smart factory can be defined as a flexible system that self-optimizes its performance over a network and self-adapts to learn and react to new conditions in real-time. This seems like a farfetched goal, but we already have the technology and knowhow from advances developed in different fields of computer science such as machine learning and artificial intelligence. These technologies are already successfully being used in other industries like self-driving cars or cryptocurrencies.

1
Fig: Smart factory characteristics (Source: Deloitte University Press)

Until recently, the implementation or even the idea of a smart factory was elusive due to the prohibitive costs of computing and storage. Today, advancements in the fields of machine learning and AI and easy accessibility to cloud solutions for analytics, such as IBM Watson or similar companies, has made getting started in this field relatively easy.

One of the significant contributors in smart factory data visualization has been the growing number of IO-Link sensors in the market. These sensors not only produce the standard sensor data but also provide a wealth of diagnostic data and monitoring while being sold at a similar price point as non-IO-Link sensors. The data produced can be fed into these smart factory systems for condition monitoring and preventive maintenance. As they begin to produce self-monitoring data, they become the lifeblood of the smart factory.

Components

The tools that have been used in the IT industry for decades for visualizing and monitoring server load and performance can be easily integrated into the existing plant floor to get seamless data visibility and dashboards. There are two significant components of this system: Edge gateway and Applications.

2
Fig: An IIoT system

Edge Gateway

The edge gateway is the middleware that connects the operation technology and Information technology. It can be a piece of software or hardware and software solutions that act as a universal protocol translator.

As shown in the figure, the edge gateway can be as simple as something that dumps the data in a database or connects to cloud providers for analytics or third-party solutions.

Applications

One of the most popular stacks is Influxdb to store the data, Telegraf as the collector, and Grafana as a frontend dashboard.

These tools are open source and give customers the opportunity to dive into the IIoT and get data visibility without prohibitive costs. These can be easily deployed into a small local PC in the network with minimal investment.

The applications discussed in the post:

Grafana

Telegraf

Influxdb

Node-red Tutorial

IO-Link Parameterization Maximizes Functionality, Reduces Expenses

Parameters are the key to maximizing performance and stretching sensor functionality on machines through IO-Link. They are typically addressed during set up and then often underutilized because they are misunderstood. Even users familiar with IO-Link parameters often don’t know the best method for adjustment in their systems and how to benefit from using them.

Using parameters reduces setup time
During standard installation, users must acquire all manuals for each IO-Link device and then hope that all manufactures provided detailed information for parameter setting. All IO-Link device manufacturers are required to produce an IODD file, which can be accessed through the IODD Finder. This IODD file provides a list of available parameters for an IO-Link device which will save the user time by eliminating the need for manuals. Some IO-Link masters can permanently store IODD files for rapid IO-Link parameterization. This feature brings the parameters into an online webpage and gives drop down menus with all available options along with buttons for reading and writing the parameters.

1

Maximize functionality of the device
Setpoints can be changed on the fly during normal operation of the machine which will allow a device to expand to the actual range and resolution of each device. Multiple pieces of information can be extracted through IO-Link parameters that are not typically available in process data. One example being an IO-Link pressure sensor with a thermistor included so that temperature can be recorded in the parameters while sending normal pressure values. This allows the user to understand the health of their devices and gather optimal information for more visibility into their processes.

Allows for backup and recovery
IO-Link parameterization allows the user to read and write ALL parameters of IO-Link Data of the device. For example, a two-set point sensor will typically have a teach button/potentiometer that technically limits adjustment for only two parameters and cannot be backed up. This method leaves devices vulnerable to extended downtime from loss of setpoints as well as adding complex teach functions that are not precise. IO-Link parameterization on the other hand pulls teach buttons/potentiometers into the digital world with precision and repeatability. Some IO-Link master blocks have a parameter server function that backs up device parameters in case a sensor needs to be replaced, ultimately providing predictive maintenance, reduced downtime, and easy recipe changes quickly throughout the process.

Using IO Link parameterization is highly important because it reduces setup time, maximizes the functionality of the IO-Link device, and allows for backup and recovery of the parameters. Implementing parameters results in being more cost effective and decreases frustration during the installation process and required maintenance. These parameter functions are just one of the many benefits of using IO Link.

From Design and Build, to Operation and Maintenance, IO-Link Adds Flexibility

With almost twelve million installed nodes as of 2019, IO-Link is being rapidly adopted in a wide range of industries and applications. It is no wonder since it provides more flexibility in how we build and maintain our machines and delivers more data.

Design
As an IEC standard (IEC 61131-9), IO-Link provides consistency in how our devices are connected and integrated. With an already large and ever growing base of manufacturers providing IO-Link devices, we have an incredible amount of choice when it comes to what vendors we use and what devices we incorporate into our systems, all while having the confidence that all of these devices will work and communicate together. Fieldbus independent and based on a point-to-point connection using standard 3 and 4 wire sensor cables, IO-Link allows designers to replace PLC input cards in the control cabinet with machine-mounted IO-Link masters and input hubs. This technology means we are drastically less limited in how we design our machines.

Build/Commissioning
IO-Link is well known for simplifying and reducing build time of machines. Standardization of connections means that readily available double ended quick disconnect sensor cables can replace individually terminated wires, and analogue devices and devices using RS232 connections can be replaced with IO-Link devices which connect directly to a machine mounted IO-Link master or IO hub. Simplified wiring along with delivered diagnostics leads to greatly simplified network architecture and reduced build/commissioning time, as well as increased trouble shooting ability. This all leads to reduced hardware and labor cost.

When it comes to the software side of things, you might think that all of this additional functionality and flexibility increases the burden on programmers, however through the use of configuration files provided by the device manufacturers for both the IO-Link devices and the PLC, this additional functionality and data is at our fingertips with minimal time and effort. With the large adoption of IO-Link and growing manufacturer base comes great amounts of reference material, videos, example programs, and support, all of which can help to get our systems up and running quickly.

Operation
When it comes to operation IO-Link opens a world of possibilities. Bidirectional communication of not only process data but diagnostics and parameter data delivers real time visibility into the entire system during operation all the way down to the device level. Things like automated or guided changeover become possible, for example if a manufacturer produces two different parts on the same line, after the production of part A, devices can be reparameterized for production of part B with the push of a button.

Maintenance
Maintenance sees massive benefits from IO-Link thanks to reduced unplanned downtime through device diagnostics which allow for predictive maintenance practices. If a device does get damaged or fails at an inconvenient time, the issue can be found much quicker and be replaced. Once the IO-Link master recognizes that the device was replaced with the same hardware ID, it can automatically reparameterize the device.

IO-Link is already making our lives easier and providing manufacturers with more possibilities in their automated systems, and as we push into Industry 4.0 it continues to prove its value.

For more information on IO-Link and Industry 4.0 visit www.Balluff.com