Industrial sensors with diagnostic functionality

Self-Awareness
For monitoring functionality in industrial processes two aspects are relevant: Environmental awareness and self-awareness. Environmental awareness analyzes impacts which are provided by the environment (e.g. ambient temperature). Self-awareness collects information about the internal statuses of (sub)systems. The diagnostic monitoring of industrial processes, which are typically dynamic, is  not as critical as the monitoring of static situations. If you have many signal changes of sensors due to the activity of actuators, with each plausible sensor signal change you can be confident that the sensor is still alive and acts properly. A good example of this is rotation speed measurement of a wheel with an inductive sensor having many signal changes per second. If the actuator drove the wheel to turn but the sensor would not provide signal changes at its output, something would be wrong. The machine control would recognize this and would trigger a stop of the machine and inspection of the situation.

Inductive Sensors with self-awareness

DESINA
For level sensing applications in cooling liquid tanks of metalworking applications inductive sensors with self-diagnostics are often used. The inductive sensors detect a metal flag which is mounted to a float with rod fixation.

1

Additionally, to the switching output these sensors have a monitor output which is a “high” signal when the sensor status is OK. In situations where the sensor is not OK, for example when there has been a short circuit or sensor coil damage, the monitor output will be a “low” signal.  This type of so called DESINA sensors is standardized according to ISO 23570-1 (Industrial automation systems and integration – Distributed installation in industrial applications – part 1: Sensors and actuators).

Dynamic Sensor control
Another approach is the Dynamic Sensor Control (DSC). Rather than using an additional monitoring output, this type of sensors provides impulses while it is “alive.”

2

The sensor output provides information about the position of the target with reference to the sensor as well as status diagnostic of the sensor itself.

IO-Link
With IO-Link communication even teaching of defined switching distance can be realized. The IO-Link concept allows you to distinguish between real-time process data (like target in/out of sensing range) and service data which may be transferred with a lower update rate (in the background of the real process).

For more information, visit www.balluff.com.

This blog post was originally published on the innovating-automation.blog.

Press Shops Boost Productivity with Non-Contact Connections

In press shops or stamping plants, downtime can easily cost thousands of dollars in productivity. This is especially true in the progressive stamping process where the cost of downtime is a lot higher as the entire automated stamping line is brought to a halt.

BIC presse detail 231013

Many strides have been made in modern stamping plants over the years to improve productivity and reduce the downtime. This has been led by implementing lean philosophies and adding error proofing systems to the processes. In-die-sensing is a great example, where a few inductive or photo-eye sensors are added to the die or mold to ensure parts are seated well and that the right die is in the right place and in the right press. In-die sensing almost eliminated common mistakes that caused die or mold damages or press damages by stamping on multiple parts or wrong parts.

In almost all of these cases, when the die or mold is replaced, the operator must connect the on-board sensors, typically with a multi-pin Harting connector or something similar to have the quick-connect ability. Unfortunately, often when the die or mold is pulled out of the press, operators forget to disconnect the connector. The shear force excreted by the movement of removing the die rips off the connector housing. This leads to an unplanned downtime and could take roughly 3-5 hours to get back to running the system.

 

image

Another challenge with the multi-conductor connectors is that over-time, due to repeated changeouts, the pins in the connectors may break causing intermittent false trips or wrong die identification. This can lead to serious damages to the system.

Both challenges can be solved easily with the use of a non-contact coupling solution. The non-contact coupling, also known as an inductive coupling solution, is where one side of the connectors called “Base” and the other side called “Remote” exchange power and signals across an air-gap. The technology has been around for a long time and has been applied in the industrial automation space for more than a decade primarily in tool changing applications or indexing tables as a replacement for slip-rings. For more information on inductive coupling here are a few blogs (1) Inductive Coupling – Simple Concept for Complex Automation Part 1,  (2) Inductive Coupling – Simple Concept for Complex Automation Part 2

For press automation, the “Base” side can be affixed to the press and the “Remote” side can be mounted on a die or mold, in such a way that when the die is placed properly, the two sides of the coupler can be in the close proximity to each other (within 2-5mm). This solution can power the sensors in the die and can help transfer up to 12 signals. Or, with IO-Link based inductive coupling, more flexibility and smarts can be added to the die. We will discuss IO-Link based inductive coupling for press automation in an upcoming blog.

Some advantages of inductive coupling over the connectorized solution:

  • Since there are no pins or mechanical parts, inductive coupling is a practically maintenance-free solution
  • Additional LEDs on the couplers to indicate in-zone and power status help with quick troubleshooting, compared to figuring out which pins are bad or what is wrong with the sensors.
  • Inductive couplers are typically IP67 rated, so water ingress, dust, oil, or any other environmental factor does not affect the function of the couplers
  • Alignment of the couplers does not have to be perfect if the base and remote are in close proximity. If the press area experiences drastic changes in humidity or temperature, that would not affect the couplers.
  • There are multiple form factors to fit the need of the application.

In short, press automation can gain a productivity boost, by simply changing out the connectors to non-contact ones.

 

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orients them correctly and then feeds them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

IO-Link Makes Improving OEE in Format Change Easier than Ever

One of the primary applications in Packaging, Food & Beverage that is a huge area for improving overall equipment efficiency (OEE) is format change.  Buyers respond well to specialized or individualized packaging, meaning manufacturers need to find ways to implement those format changes and machine builders must make those flexible machines available.

IO-Link Makes Improving OEE in Format Change Easier than Ever_2

Today, thanks to IO-Link devices, including master blocks, hubs and linear position sensors, improving OEE on format change is more possible today than ever before. IO-Link offers capabilities that make it ideal for format change. It communicates:

  • Process data (control, cyclical communication of process status)
  • Parameter data (configuration, messaging data with configuration information)
  • Event data (diagnostics, communication from device to master including diagnostics/errors)

What is format change and how does it impact OEE?

Format change is the physical adjustments necessary to make to a machine when the product is altered in some way.  It could be a change in carton size, package size, package design, case size or a number of other modifications to the product or packaging.  The time to adjust the machine itself or the sensors on the machine can take anywhere from 30 minutes to an entire eight- hour shift.

Types of format changes to consider when seeking to improve your OEE:

Guided format change is when the operator is assisted or guided in making the change.  For example, having to move or slide a guide rail into a new position.  IO-Link linear position sensors can help guide the operator, so the position is exact every time. This reduces time by eliminating the need to go back and look at an HMI or cheat sheet to determine if everything is in the right position.

Change parts is when a part needs to be swapped out on the machine for the next production run.  An example of this is when the bag size on a bagger or vertical form fill and seal (VFFS) machine changes and the forming tube needs to be changed.  Having an RFID tag on the forming tube and a RFID reader on the machine allows for easy verification that the correct forming tube was put on the machine and only takes seconds.

Color Change is when the color of a pouch, package or container changes for the next production run like when a yogurt pouch changes color or design while the size and shape remain the same as previous production runs. Smart color photo electric sensors can change the parameters on the photo eye to detect the correct color of the new pouch occurs instantly upon changing the recipe on the machine.

Developing semi-automated or fully automated solutions can improve OEE in regard to format change by helping reduce the time needed to make the change and providing consistent and accurate positioning with the ability to automatically change parameters in the sensor.

Being smart, easy and universal, IO-Link helps simplify format change and provides the ability to change sensor parameters quickly and easily.

IO-Link Makes Improving OEE in Format Change Easier than Ever_1

How TSN boosts efficiency by setting priorities for network bandwidth

As manufacturers move toward Industry 4.0 and the Industrial Internet of Things (IIoT), common communication platforms are needed to achieve the next level of efficiency boost. Using common communication platforms, like Time-Sensitive Networking (TSN), significantly reduces the burden of separate networks for IT and OT without compromising the separate requirements from both areas of the plant/enterprise.

TSN is the mother of all network protocols. It makes it possible to share the network bandwidth wisely by allocating rules of time sensitivity. For example, industrial motion control related communication, safety communication, general automation control communication (I/O), IT software communications, video surveillance communication, or Industrial vision system communication would need to be configured based on their time sensitivity priority so that the network of switches and communication gateways can effectively manage all the traffic without compromising service offerings.

If you are unfamiliar with TSN, you aren’t alone. Manufacturers are currently in the early adopter phase. User groups of all major industrial networking protocols such as ODVA (CIP and EtherNet/IP), PNO (for PROFINET and PROFISAFE), and CLPA (for CC-Link IE) are working toward incorporating TSN abilities in their respective network protocols. CC-Link IE Field has already released some of the products related to CC-Link IE Field TSN.

With TSN implementation, the current set of industrial protocols do not go away. If a machine uses today’s industrial protocols, it can continue to use that. TSN implementation has some gateway modules that would allow communicating the standard protocols while adding TSN to the facility.

While it would be optimal to have one universal protocol of communication across the plant floor, that is an unlikely scenario. Instead, we will continue to see TSN flavors of different protocols as each protocol has its own benefits of things it does the best. TSN allows for this co-existence of protocols on the same network.

 

IO-Link devices deliver data specific to your manufacturing operations needs

IO-Link is a point-to-point communication standard [IEC61131-9]. It is basically a protocol for communicating information from end devices to the controller and back. The beauty of this protocol is that it does not require any specialized cabling. It uses the standard 3-pin sensor cable to communicate. Before IO-Link, each device needed a different cable and communication protocol. For example, measurement devices needed analog signals for communication and shielded cables; digital devices such as proximity sensors or photo eyes needed 2-pin/3-pin cables to communicate ON/OFF state; and any type of smart devices such as laser sensors needed both interfaces requiring multi-conductor cables. All of these requirements and communication was limited to signals.

Shishir1

With IO-Link all the devices communicate over a standard 3-pin (some devices would require 4/5 pin depending if they need separate power for actuation). And, instead of communicating signals, all these devices are communicating data. This provides a tremendous amount of flexibility in designing the controls architectures for the next generation machines.

IO-Link data communication can be divided into 3 parts:

  1. Process data: This is the basic functionality of the sensor communicated over cyclical messages. For example, a measurement device communicating measurement values, not 4-20mA signals, but the engineering units of measurement.
  2. Parameter data: This is a cyclic messaging data communication and where IO-Link really shines. Manufacturers can add significant value to their sensors in this area. Parameter data is communicated only when the controller wants to make changes to the sensor. Examples of this include changing the engineering units of measurement from inches to millimeters or feet, or changing the operational mode of a photoelectric sensor from through-beam to retro-reflective, or even collecting capacitance value from a capacitive sensor. There is no specific parameter data governed by the consortium — consortium only focuses on how this data is communicated.
  3. Event data: This is where IO-Link helps out by troubleshooting and debugging issues. Event messages are generated by the sensor to inform the controller that something has changed or to convey critical information about the sensor itself. A good example would be when a photoeye lens gets cloudy or knocked out of alignment causing a significant decrease in the re-emitted light value and the sensor triggers an event indicating the probable failure. The other example is the sensor triggering an event to alert the control system of a high amperage spike or critical ambient temperatures. When to trigger these events can be scheduled through parameter data for that sensor.

Shishir2

Each and every IO-Link device on the market offers different configurations and are ideally suited for various purposes in the plant. If inventory optimization is the goal of the plant, the buyer should look for features in the IO-Link device that can function in different modes of operation such as a photo eye that can operate as through-beam or retro-reflective. On the other hand, if machine condition monitoring is the objective, then he should opt for sensors that can offer vibration and ambient temperature information along with the primary function.

In short, IO-Link communication offers tremendous benefits to operations. With options like auto-parameterization and cable standardization, IO-Link is a maintenance-friendly standard delivering major benefits across manufacturing.

Shishir3

How IO-Link is Revolutionizing Overall Equipment Efficiency

Zero downtime.  This is the mantra of the food and beverage manufacturer today.  The need to operate machinery at its fullest potential and then increase the machines’ capability is where the demands of food and beverage manufacturers is at today.  This demand is being driven by smaller purchase orders and production runs due to e-commerce ordering, package size variations and the need for manufacturers to be more competitive by being flexible.

Using the latest technology, like IO-Link, allows manufacturers to meet those demands and improve their Overall Equipment Efficiency (OEE) or the percentage of manufacturing time that is truly productive.  OEE has three components:

  1. Availability Loss
    1. Unplanned Stops/Downtime – Machine Failure
    2. Planned Downtime – Set up and AdjustmentsS
  2. Performance Loss
    1. Small Stops – Idling and Minor Stops
    2. Slow Cycles – Reduced Speed
  3. Quality Loss
    1. Production Rejects – Process Defects
    2. Startup Rejects – Reduced Yield

IO-Link is a smart, easy and universal way to connect devices into your controls network.

The advantage of IO-Link is that it allows you to connect to EtherNet/IP, CC-Link & CC-LinkIE Field, Profinet & Profibus and EtherCAT & TCP/IP regardless of the brand of PLC.  IO-Link also allows you to connect analog devices by eliminating traditional analog wiring and provides values in actual engineering units without scaling back at the PLC processor.

Being smart, easy and universal, IO-Link helps simplify controls architecture and provides visibility down to the sensor and device.

IO-Link communicates the following:

  • Process data (Control, cyclical communication of process status)
  • Parameter data (Configuration, messaging data with configuration information)
  • Event data (Diagnostics, Communication from device to master (diagnostics/errors )

This makes it the backbone of the Smart Factory as shown in the graphic below.

 

IO-Link Simplifies the Controls Architecture

IO-Link OEE1

IO-Link OEE2

The Emergence of Device-level Safety Communications in Manufacturing

Manufacturing is rapidly changing, driven by trends such as low volume/high mix, shorter lifecycles, changing labor dynamics and other global factors. One way industry is responding to these trends is by changing the way humans and machines safely work together, enabled by updated standards and new technologies including safety communications.

In the past, safety systems utilized hard-wired connections, often resulting in long cable runs, large wire bundles, difficult troubleshooting and inflexible designs. The more recent shift to safety networks addresses these issues and allows fast, secure and reliable communications between the various components in a safety control system. Another benefit of these communications systems is that they are key elements in implementing the Industrial Internet of Things (IIoT) and Industry 4.0 solutions.

Within a typical factory, there are three or more communications levels, including an Enterprise level (Ethernet), a Control level (Ethernet based industrial protocol) and a Device/sensor level (various technologies). The popularity of control and device level industrial communications for standard control systems has led to strong demand for similar safety communications solutions.

Safety architectures based on the most popular control level protocols are now common and often reside on the same physical media, thereby simplifying wiring and control schemes. The table, below, includes a list of the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

Ethernet Based Safety Protocol Ethernet Based Control Protocol Governing Organization
CIP Safety Ethernet IP Open DeviceNet Vendor Association (ODVA)
PROFISafe PROFINET PROFIBUS and PROFINET International (PI)
Fail Safe over EtherCAT (FSoE) EtherCAT EtherCAT Technology Group
CC-Link IE Safety CC-Link IE CC-Link Partner Association
openSAFETY Ethernet POWERLINK Ethernet POWERLINK Standardization Group (EPSG)

 

These Ethernet-based safety protocols are high speed, can carry fairly large amounts of information and are excellent for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Ethernet is familiar to most customers, and these protocols are open and supported by many vendors and device suppliers – customers can create systems utilizing products from multiple suppliers. One drawback, however, is that devices compatible with one protocol are not compatible with other protocols, requiring vendors to offer multiple communication connection options for their devices. Other drawbacks include the high cost to connect, the need to use one IP address per connected device and strong influence by a single supplier over some protocols.

Device level safety protocols are fairly new and less common, and realize many of the same benefits as the Ethernet-based safety protocols while addressing some of the drawbacks. As with Ethernet protocols, a wide variety of safety devices can be connected (often from a range of suppliers), wiring and troubleshooting are simplified, and more data can be gathered than with hard wiring. The disadvantages are that they are usually slower, carry much less data and cover shorter distances than Ethernet protocols. On the other hand, device connections are physically smaller, much less expensive and do not use up IP addresses, allowing the integration into small, low cost devices including E-stops, safety switches, inductive safety sensors and simple safety light curtains.

Device level Safety Protocol Device level Standard Protocol Open or Proprietary Governing Organization
Safety Over IO-Link/IO-Link Safety* IO-Link Semi-open/Open Balluff/IO-Link Consortium
AS-Interface Safety at Work (ASISafe) AS-Interface (AS-I) Open AS-International
Flexi Loop Proprietary Sick GmbH
GuardLink Proprietary Rockwell Automation

* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

The awareness of, and the need for, device level safety communications will increase with the desire to more tightly integrate safety and standard sensors into control systems. This will be driven by the need to:

  • Reduce and simplify wiring
  • Add flexibility to scale up, down or change solutions
  • Improve troubleshooting
  • Mix of best-in-class components from a variety of suppliers to optimize solutions
  • Gather and distribute IIoT data upwards to higher level systems

Many users are realizing that neither an Ethernet-based safety protocol, nor a device level safety protocol can meet all their needs, especially if they are trying to implement a cost-effective, comprehensive safety solution which can also support their IIoT needs. This is where a safety communications master (or bridge) comes in – it can connect a device level safety protocol to a control level safety protocol, allowing low cost sensor connection and data gathering at the device level, and transmission of this data to the higher-level communications and control system.

An example of this architecture is Safety Over IO-Link on PROFISafe/PROFINET. Devices such as safety light curtains, E-stops and safety switches are connected to a “Safety Hub” which has implemented the Safety Over IO-Link protocol. This hub communicates via a “black channel” over a PROFINET/IO-Link Master to a PROFISafe PLC. The safety device connections are very simple and inexpensive (off the shelf cables & standard M12 connectors), and the more expensive (and more capable) Ethernet (PROFINET/PROFISafe) connections are only made where they are needed: at the masters, PLCs and other control level devices. And an added benefit is that standard and safety sensors can both connect through the PROFINET/IO-Link Master, simplifying the device level architecture.

Safety

Combining device level and control level protocols helps users optimize their safety communications solutions, balancing cost, data and speed requirements, and allows IIoT data to be gathered and distributed upwards to control and MES systems.

 

Smart choices deliver leaner processes in Packaging, Food and Beverage industry

In all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

Take a look at how the Smart Factory can be implemented in Packaging, Food, and Beverage industries.

Updating Controls Architecture

  • Eliminates analog wiring and reduces costs by 15% to 20%
  • Simplifies troubleshooting
  • Enables visibility down to the sensor/device
  • Simplifies retrofits
  • Reduces terminations
  • Eliminates manual configuration of devices and sensors

Automating Guided Format Change and Change Parts

  • Eliminates changeover errors
  • Reduces planned downtime to perform change over
  • Reduces product waste from start-up after a change over
  • Consistent positioning every time
  • Ensures proper change parts are swapped out

Predictive Maintenance through IO-Link

  • Enhances diagnostics
  • Reduces unplanned downtime
  • Provides condition monitoring
  • Provides more accurate data
  • Reduces equipment slows and stops
  • Reduces product waste

Traceability

  • Delivers accurate data and reduced errors
  • Tracks raw materials and finished goods
  • Date and lot code accuracy for potential product recall
  • Allows robust tags to be embedded in totes, pallets, containers, and fixtures
  • Increases security with access control

Why is all of this important?

Converting a manufacturing process to a smart process will improve many aspects and cure pains that may have been encountered in the past. In the PFB industry, downtime can be very costly due to raw material having a short expiration date before it must be discarded. Therefore, overall equipment efficiency (OEE) is an integral part of any process within PFB. Simply put, OEE is the percentage of manufacturing time that is truly productive. Implementing improved controls architecture, automating change over processes, using networking devices that feature predictive maintenance, and incorporating RFID technology for traceability greatly improve OEE and reduce time spent troubleshooting to find a solution to a reoccurring problem.

Through IO-Link technology and smart devices connected to IO-Link, time spent searching for the root of a problem is greatly reduced thanks to continuous diagnostics and predictive maintenance. IO-Link systems alert operators to sensor malfunctions and when preventative maintenance is required.

Unlike preventative maintenance, which only captures 18% of machine failures and is based on a schedule, predictive maintenance relies on data to provide operators and controls personnel critical information on times when they may need to do maintenance in the future. This results in planned downtime which can be strategically scheduled around production runs, as opposed to unplanned downtime that comes with no warning and could disrupt a production run.

blog 2.20 1

Reducing the time it takes to change over a machine to a different packaging size allows the process to finish the batch quicker than if a manual change over was used, which in turn means a shorter production blog 2.20 2run for that line. Automated change over allows the process to be exact every time and eliminates the risk of operator error due to more accurate positioning.

 

 

blog 2.20 3Traceability using RFID can be a very important part of the smart PFB factory. Utilizing RFID throughout the process —tracking of raw materials, finished goods, and totes leaving the facility — can greatly increase the efficiency and throughput of the process. RFID can even be applied to change part detection to identify if the correct equipment is being swapped in or out during change over.

Adding smart solutions to a PFB production line improves efficiency, increases output, minimizes downtime and saves money.

For more information on the Smart Factory check out this blog post: The Need for Data and System Interoperability in Smart Manufacturing For a deeper dive into format change check out this blog post: Flexibility Through Automated Format Changes on Packaging Machines

 

 

Connecting Safety Devices to a Safety Hub

Safety device users face a dilemma when selecting safety components: They want to create a high-performance system, using best-in-class parts, but this often means buying from multiple suppliers. Connecting these devices to the safety control system to create an integrated system can be complicated and may require different cabling/wiring configurations, communications interfaces and/or long, hardwired cables.

Device-Level Protocols

One solution, discussed in a previous blog on industrial safety protocols, is to connect devices to an open, device-level protocol such as Safety Over IO-Link or AS-i Safety At Work. These protocols offer a simple way to connect devices from various suppliers using non-proprietary technologies. Both Safety Over IO-Link and AS-i Safe offer modules to which many third party devices can be connected.

Connecting to a Safety HubSafety-Arch_012518

The simplest way to connect to a safety hub/module is to buy compatible products from the hub supplier. Many safety block/hub suppliers also offer products such as E-stops, safety light curtains, door switches, inductive safety sensors and guard locking switches which may provide plug & plug solutions. There are, however, also many third party devices which can also be easily connected to some of these hubs. Hubs which are AIDA (Automation Initiative of German Domestic Automobile manufacturers) compliant allow connection of devices which are compatible with this standard. Generally, these devices have M12 connectors with 4, 5 or 8 pins, and the power, signal and ground pins are defined in the AIDA specifications. Most major safety device manufacturers offer at least one variant of their main products lines, which are AIDA pin-compatible.

AIDA/Safety Hub Compatible Devices

Some suppliers have lists of devices which meet the M12 pin/connector AIDA specification and may be connected to AIDA compatible modules. Note that not all the listed safety devices may have been tested with the safety blocks/hubs, but their specifications match the requirements. AIDA compatible devices have been identified from all major safety suppliers including Balluff, Rockwell, Sick, Schmersal, Banner, Euchner and Omron STI; and range from safety light curtains to door switches to E-stop devices.

Easy Connection

While some manufacturers prefer to focus on locking customers into a single supplier solution, many users want to combine devices from multiple suppliers in a best-in-class solution. Selecting a safety I/O block or hub which supports AIDA compatible devices makes it fast and easy to connect a wide range of these devices to create the safety system that is the best solution for your application.