Smart choices deliver leaner processes in Packaging, Food and Beverage industry

In all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

Take a look at how the Smart Factory can be implemented in Packaging, Food, and Beverage industries.

Updating Controls Architecture

  • Eliminates analog wiring and reduces costs by 15% to 20%
  • Simplifies troubleshooting
  • Enables visibility down to the sensor/device
  • Simplifies retrofits
  • Reduces terminations
  • Eliminates manual configuration of devices and sensors

Automating Guided Format Change and Change Parts

  • Eliminates changeover errors
  • Reduces planned downtime to perform change over
  • Reduces product waste from start-up after a change over
  • Consistent positioning every time
  • Ensures proper change parts are swapped out

Predictive Maintenance through IO-Link

  • Enhances diagnostics
  • Reduces unplanned downtime
  • Provides condition monitoring
  • Provides more accurate data
  • Reduces equipment slows and stops
  • Reduces product waste

Traceability

  • Delivers accurate data and reduced errors
  • Tracks raw materials and finished goods
  • Date and lot code accuracy for potential product recall
  • Allows robust tags to be embedded in totes, pallets, containers, and fixtures
  • Increases security with access control

Why is all of this important?

Converting a manufacturing process to a smart process will improve many aspects and cure pains that may have been encountered in the past. In the PFB industry, downtime can be very costly due to raw material having a short expiration date before it must be discarded. Therefore, overall equipment efficiency (OEE) is an integral part of any process within PFB. Simply put, OEE is the percentage of manufacturing time that is truly productive. Implementing improved controls architecture, automating change over processes, using networking devices that feature predictive maintenance, and incorporating RFID technology for traceability greatly improve OEE and reduce time spent troubleshooting to find a solution to a reoccurring problem.

Through IO-Link technology and smart devices connected to IO-Link, time spent searching for the root of a problem is greatly reduced thanks to continuous diagnostics and predictive maintenance. IO-Link systems alert operators to sensor malfunctions and when preventative maintenance is required.

Unlike preventative maintenance, which only captures 18% of machine failures and is based on a schedule, predictive maintenance relies on data to provide operators and controls personnel critical information on times when they may need to do maintenance in the future. This results in planned downtime which can be strategically scheduled around production runs, as opposed to unplanned downtime that comes with no warning and could disrupt a production run.

blog 2.20 1

Reducing the time it takes to change over a machine to a different packaging size allows the process to finish the batch quicker than if a manual change over was used, which in turn means a shorter production blog 2.20 2run for that line. Automated change over allows the process to be exact every time and eliminates the risk of operator error due to more accurate positioning.

 

 

blog 2.20 3Traceability using RFID can be a very important part of the smart PFB factory. Utilizing RFID throughout the process —tracking of raw materials, finished goods, and totes leaving the facility — can greatly increase the efficiency and throughput of the process. RFID can even be applied to change part detection to identify if the correct equipment is being swapped in or out during change over.

Adding smart solutions to a PFB production line improves efficiency, increases output, minimizes downtime and saves money.

For more information on the Smart Factory check out this blog post: The Need for Data and System Interoperability in Smart Manufacturing For a deeper dive into format change check out this blog post: Flexibility Through Automated Format Changes on Packaging Machines

 

 

Connecting Safety Devices to a Safety Hub

Safety device users face a dilemma when selecting safety components: They want to create a high-performance system, using best-in-class parts, but this often means buying from multiple suppliers. Connecting these devices to the safety control system to create an integrated system can be complicated and may require different cabling/wiring configurations, communications interfaces and/or long, hardwired cables.

Device-Level Protocols

One solution, discussed in a previous blog on industrial safety protocols, is to connect devices to an open, device-level protocol such as Safety Over IO-Link or AS-i Safety At Work. These protocols offer a simple way to connect devices from various suppliers using non-proprietary technologies. Both Safety Over IO-Link and AS-i Safe offer modules to which many third party devices can be connected.

Connecting to a Safety HubSafety-Arch_012518

The simplest way to connect to a safety hub/module is to buy compatible products from the hub supplier. Many safety block/hub suppliers also offer products such as E-stops, safety light curtains, door switches, inductive safety sensors and guard locking switches which may provide plug & plug solutions. There are, however, also many third party devices which can also be easily connected to some of these hubs. Hubs which are AIDA (Automation Initiative of German Domestic Automobile manufacturers) compliant allow connection of devices which are compatible with this standard. Generally, these devices have M12 connectors with 4, 5 or 8 pins, and the power, signal and ground pins are defined in the AIDA specifications. Most major safety device manufacturers offer at least one variant of their main products lines, which are AIDA pin-compatible.

AIDA/Safety Hub Compatible Devices

Some suppliers have lists of devices which meet the M12 pin/connector AIDA specification and may be connected to AIDA compatible modules. Note that not all the listed safety devices may have been tested with the safety blocks/hubs, but their specifications match the requirements. AIDA compatible devices have been identified from all major safety suppliers including Balluff, Rockwell, Sick, Schmersal, Banner, Euchner and Omron STI; and range from safety light curtains to door switches to E-stop devices.

Easy Connection

While some manufacturers prefer to focus on locking customers into a single supplier solution, many users want to combine devices from multiple suppliers in a best-in-class solution. Selecting a safety I/O block or hub which supports AIDA compatible devices makes it fast and easy to connect a wide range of these devices to create the safety system that is the best solution for your application.

IO-Link — Enables Industry 4.0 and Reduces Costs

Where does IO-Link fit on the road to Industry 4.0 and smart manufacturing?

IO-Link is a major enabling force for Industry 4.0 & smart manufacturing. Motivations for flexible manufacturing, efficient production and visibility require that we have more diagnostics and data available for analysis and monitoring. Lot-size-one flexible manufacturing requires that sensors and field devices be able to adapt to a rapidly changing set of requirements. With the parameterization feature of IO-Link slave devices, we can now send new parameters for production to the sensor on a part by part basis if required. For example, you could change a color sensor’s settings from red to green to orange to grey and back to red if necessary, allowing for significantly more flexible production. With efficient production, IO-Link slaves provide detailed diagnostics and condition monitoring information, allowing for trending of data, prediction of failure modes, and, thus, eliminating most downtime as we can act on the prediction data in a controlled & planned way. Trending of information like the current output of a power supply can give us new insights into changes in the machine over time or provide visibility into why a failure occurred.  For example, if a power supply reported a two amp jump in output three weeks ago, we can now ask, “what changed in our equipment 3 weeks ago that caused that?” This level of visibility can help management make better decisions about equipment health and production requirements.

Has IO-Link been widely accepted? Is anything still holding back its implementation?

In the last year IO-Link has become widely accepted. Major automation players like Balluff, Rockwell Automation, Festo, Siemens, SMC, Turck, Banner, Schmalz, Beckhoff, IFM and more than 100 other companies are engaged, promoting and, most importantly, building an installed base of functional IO-Link applications. We have seen installations in almost every industry segment: automotive OEMs, automotive tier suppliers, food & dairy machinery, primary packaging machinery, secondary packaging machinery, conveying systems, automated welding equipment, robot dress packs, on end-effectors of robots, automated assembly stations, palletized assembly lines, steel mills, wood mills, tire presses and more. The biggest roadblock to IO-Link becoming even further expanded in the market is typically a lack of skillset to support automation in the factory or a wariness of IO-Link as “another industrial network.”

What is the latest trend in IO-Link technology?

One of the biggest trends we are seeing with IO-Link technology is the reduction of analog on the machine.  With analog signals there are many “gotchas” that can ruin a good sensor application: electrical noise on the line, poor grounding design, more wiring, expensive analog input cards, and extra integration work. Analog signals cause a lot of extra math that we don’t need or want to do, for example: a linear position measurement sensor is 205mm long with a 4-20mA output tied into a 16bit input card. How many bits are there per mm?  A controls engineer needs to do a lot of mental gymnastics to integrate this into their machine. With IO-Link and a standard sensor cable, the wiring and grounding issues are typically eliminated and since IO-Link sensors report their measurements in the engineering units of the device, the mathematic gymnastics are also eliminated.  In our example, the 205mm long linear position sensor reports 205mm in the PLC, simple, faster to integrate and usually a much better overall application cost.

Why IO-Link is the Best Suited Technology for Smart Manufacturing

While fieldbus solutions utilize sensors and devices with networking ability, they come with limitations. IO-Link provides one standard device level communication that is smart in nature and network independent. That enables interoperability throughout the controls pyramid, making it the most suitable choice for smart manufacturing.

IO-Link offers a cost effective solution to the problems. Here is how:

  • IO-Link uses data communication rather than signal communication. That means the communication is digital with 24V signal with high resistance to the electrical noise signals.
  • IO-Link offers three different communication modes: Process communication, Diagnostic communication (also known as configuration or parameter communication), and Events.
    • Process communication offers the measurement data for which the device or sensor is primarily selected. This communication is cyclical and continuous in nature similar to discrete I/O or analog communication.
    • Diagnostic communication is a messaging (acyclic) communication that is used to set up configuration parameters, receive error codes and diagnostic messages.
    • Event communication is also acyclic in nature and is how the device informs the controller about some significant event that the sensor or that device experienced.
  • IO-Link is point-to-point communication, so the devices communicate to the IO-Link master module, which acts as a gateway to the fieldbus or network systems or even standard TCP/IP communication system. So, depending on the field-bus/network used, the IO-Link master may change but all the IO-Link devices enjoy the freedom from the choice of network. Power is part of the IO-Link communication, so it does not require separate power port/drop on the devices.
  • Every open IO-Link master port offers expansion possibilities for future integration. For example, you could host an IO-Link RFID device or a barcode reader for machine access control as a part of a traceability improvement program.

For more information, visit www.balluff.com/io-link.

The Need for Data and System Interoperability in Smart Manufacturing

As technology advances at a faster pace and the world becomes flatter, manufacturing operations are generally focused on efficient production to maximize profitability for the organization. In the new era of industrial automation and smart manufacturing, organizations are turning to data generated on their plant floors to make sound decisions about production and process improvements.

Smart manufacturing improvements can be divided roughly into six different segments: Predictive Analytics, Track and Trace, Error Proofing, Predictive Maintenance, Ease of Troubleshooting, and Remote Monitoring.IOLink-SmartManufacturing_blog-01To implement any or all of these improvements requires interoperable systems that can communicate effectively and sensors and devices with the ability to provide the data required to achieve the manufacturer’s goals. For example, if the goal is to have error free change-overs between production cycles, then feedback systems that include identification of change parts, measurements for machine alignment changes, or even point of use indication for operators may be required.  Similarly, to implement predictive maintenance, systems require devices that provide alerts or information about their health or overall system health.

Traditional control system integration methods that rely heavily on discrete or analog (or both) modes of communication are limited to specific operations. For example, a 4-20mA measurement device would only communicate a signal between 4-20mA. When it goes beyond those limits there is a failure in communication, in the device or in the system. Identifying that failure requires manual intervention for debugging the problem and wastes precious time on the manufacturing floor.

The question then becomes, why not utilize only sensors and devices with networking ability such as a fieldbus node? This could solve the data and interoperability problems, but it isn’t an ideal solution:

  • Most fieldbuses do not integrate power and hence require devices to have separate power drops making the devices bulkier.
  • Multiple fieldbuses in the plant on different machines requires the devices to support multiple fieldbus/network protocols. This can be cost prohibitive, otherwise the manufacturer will need to stock all varieties of the same sensor.
  • Several of the commonly used fieldbuses have limitations on the number nodes you can add — in general 256 nodes is capacity for a subnet. Additional nodes requires new expensive switches and other hardware.

IOLink-SmartManufacturing_blog-02IO-Link provides one standard device level communication that is smart in nature and network independent, thus it enables interoperability throughout the controls pyramid making it the most suitable choice for smart manufacturing.

We will go over more specific details on why IO-Link is the best suited technology for smart manufacturing in next week’s blog.

 

Safely Switch Off Cylinders While Transmitting Field Data

Is it possible to safely switch off cylinders while simultaneously transmitting field data and set up the system in accordance with standards? Yes!

In order to rule out a safety-critical fault between adjacent printed circuit board tracks/contact points (short circuit) according to DIN EN ISO 13849, clearance and creepage distances must be considered. One way to eliminate faults is to provide galvanic isolation by not interconnecting safety-relevant circuits/segments. This means  charge carriers from one segment cannot switch over to the other, and the separation makes it possible to connect the safety world with automation — with IO-Link. Safely switching off actuators and simultaneously collecting sensor signals reliably via IO-Link is possible with just one module. To further benefit from IO-Link and ensure safety at the same time, Balluff’s I/O module is galvanically isolated with a sensor and an actuator segment. The two circuits of the segments are not interconnected, and the actuator segment can be safely switched off without affecting the sensors. Important sensor data can still be monitoring and communicated.

The topological structure and the application of this safety function is shown in this figure as an example:

2D-SAGT-Betriebsanleitung_v2

  1. A PLC is connected to an IO-Link master module via a fieldbus system.
  2. The IO-Link master is the interface to all I/O modules (IO-Link sensor/actuator hubs) or other devices, such as IO-Link sensors. The IO-Link communication takes place via a standardized M12 connector.
  3. Binary switching elements can be connected to the galvanically isolated sensor/actuator hub (BNI IOL-355). The four connection ports on the left correspond to the sensor segment and the four ports on the right correspond to the actuator segment. Communication of the states is done via IO-Link.
  4. The power supply for both segments takes place via a 7/8″ connection, whereby attention must be paid to potential separated routing of the sensor and actuator circuits. Both the power supply unit itself and the wiring to the IO-Link device with the two segments must also ensure external galvanic isolation. This is made possible by separating the lines with a splitter.
  5. An external safety device is required to safely interrupt the supply voltage of the actuator segment (four ports simultaneously). Thus, the module can implement safety functions up to SIL2 according to EN62061/PLd and ISO 13849.  For example, this can happen through the use of a safety relay, whereby the power supply is safely disconnected after actuation of peripheral safety devices (such as emergency stops and door switches). At the same time, the sensor segment remains active and can provide important information from the field devices.

The module can handle up to eight digital inputs and outputs. If the IO-Link connection is interrupted, the outputs assume predefined states that are retained until the IO-Link connection is restored. Once the connection is restored, this unique state of the machine can be used to continue production directly without a reference run.

An application example for the interaction of sensors and actuators in a safety environment is the pneumatic clamping device of a workpiece holder. The position feedback of the cylinders is collected by the sensor segment, while at the same time the actuator segment can be switched off safely via its separately switchable safety circuit. If the sensor side is not required for application-related reasons, galvanically isolated IO-Link modules are also available with only actuator segments (BNI IOL 252/256). An isolated shutdown can protect up to two safety areas separately.

 

Non-Contact Transmission of Power & Data on Transfer Rails & Grippers

For press shops utilizing transfer rail systems, fixed sensor connections regularly cause frustration. Cables and contacts are often subject to heavy strain. Cables can wear out and break, damaged pins or mechanical collisions can cause hours of machine downtime, and the replacement of large multi-pin connectors comes at a high cost.

Inductive couplers offer an ideal solution: By using these non-contact, wear-free products you can eliminate pin connections and simplify job changeovers on the press. Inductive couplers transfer signals and power contact-free over an air gap. The quick-disconnect units are easy to use and require no maintenance, enabling you to meet new demands quickly. Mechanical wear is a thing of the past. This increases system availability, reduces cycle time and enhances the flexibility of workflow processes.

Inductive coupling example

Replace pin connections for transfer rails

Typically, two pin-based connectors connect the transfer rail to the transfer system on the press. The connections are on both the feed and exit sides of the rail to the control. If there is any misalignment of the connections, damage regularly occurs. By replacing the connectors with pin-free inductive couplers, the connections are simplified and repair work is minimized. Additionally you don’t have open pins exposed to the environment (dust, water, oil) that can also cause nuisances in the connection process.

Replace pin connections for grippers

To connect the transfer rail on each gripper, normally a pin-based connector is used. As the grippers are changed on each tooling change, the connectors become worn and damaged with regularity. By replacing the pin connector with non-contact inductive couplers, the two sensor signals are maintained but the maintenance of these connections is reduced dramatically. An additional “in-zone signal” verifies that the gripper is installed and connected. This provides assurance during operation.

Inductive couplers offer IO-Link functionality

Inductive coupling with IO-Link technology adds more benefits besides replacing the pin coupling. It allows users to transfer up to 32 bytes of data in addition to power for actuation or sensors. If you connect IO-Link enabled I/O hubs or valve connectors to the remote side, you can also store identification data on the IO-Link hub or valve. When the connection is established, the controller can request the identification data from the tool to ensure that the system is utilizing the correct tool for the upcoming process.

With pin based coupling you needed up to 4-5 seconds to first engage the tool and to mate the two ends of the pin couplers and then request the identification. With inductive couplers, the base only needs to be brought closer to the remote so that you quickly couple and identify the tool before engaging the tool — this takes less than a second. Additionally the base and remote do not need to be well aligned to couple. Misalignment up to 15-20 degrees of angular offset or 2-4 mm of axial offset still provides functionality.

The benefits at a glance

  • Power and signals transfer with pin-less connectivity
  • Reduced downtime due to rail or gripper repair
  • Know that the gripper is present and powered with in-zone signal
  • Inform the controller that the rail has power and connectivity to the sensors

To decide the right coupler for your next application visit www.balluff.com.

 

Industrial Safety Protocols

There are typically three or more communication levels in the modern factory which consist of:

  • Enterprise level (Ethernet)
  • Control level (Ethernet based industrial protocol)
  • Device/sensor level (various technologies)

IO-Link

The widespread use of control and device level communications for standard (non-safety) industrial applications led to a desire for similar communications for safety. We now have safety versions of the most popular industrial control level protocols, these make it possible to have safety and standard communications on the same physical media (with the appropriate safety hardware implemented for connectivity and control). In a similar manner, device level safety protocols are emerging to allow standard and safety communications over the same media. Safety Over IO-Link and AS-i Safety At Work are two examples.

This table lists the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

chart1

And this table lists some of the emerging, more well-known, safety device level protocols with their related standard protocols and the governing or leading organizations:

Chart2
* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

Ethernet-based safety protocols are capable of high speed and high data transmission, they are ideal for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Device level protocol connections are physically smaller, much less expensive and do not use up IP addresses, but they also carry less data and cover shorter distances than Ethernet based protocols. They are ideal for connecting small, low cost devices such as E-stops, safety switches and simple safety light curtains.

As with standard protocols, neither a control level safety protocol, nor a device level safety protocol can meet all needs, therefore cost/performance considerations drive a “multi-level” communications approach for safety. This means a combined solution may be the best fit for many safety and standard communications applications.

A multi-level approach has many advantages for customers seeking a cost-effective, comprehensive safety and standard control and device solution which can also support their IIoT needs. Users can optimize their safety communications solutions, balancing cost, data and speed requirements.

Connecting Fluid Power to the Industrial IoT and Industry 4.0

The next industrial revolution has already begun. To remain a viable business, it’s time to invest in IIoT and Industry 4.0 applications, regardless of whether you are a “mechanical-only” company or not.Industry 4.0 & Industrial IoT

Industrial Internet of Things

IIoT is simply about connecting devices on the plant floor to a network. These connections provide new ways to generate and collect useful data. This network can provide visibility down into the machine, enabling predictive maintenance and big data analytics. With IIoT, we are able to improve overall equipment effectiveness and provide new insights into our business.

Industry 4.0

On a grander scale, Industry 4.0 is a blend of digitalization, new technology and practical decisions to improve manufacturing. Industry 4.0 aims to achieve unprecedented flexibility, efficient production and visibility at every level of production. Industry 4.0 has impact throughout our processes and across the supply chain. Its philosophy blends lean initiatives, automation, technology, materials, downtime reduction upgrades, and investments in overall equipment effectiveness. This philosophy keeps the current generation of manufacturers competitive in a global market. While the German government set this precedent for Industry 4.0, the entire manufacturing world must now take on this challenge.

Implementing IIoT and Industry 4.0

Standard systems like hydraulic power units (HPUs) are receiving a major boost by becoming IIoT-ready. Traditional on/off flow or pressure switches are upgrading to provide information beyond the simple switch points. In addition, analog devices like temperature, pressure, flow, and level transducers can become IIoT-ready through open standard technologies like IO-Link. These technologies add additional value by incorporating easy-to-report parameters, diagnostics, events and warnings. A standard HPU can become a smart power unit with minimal modification.

The value of IIoT increases with predictive maintenance, remote monitoring and ease of troubleshooting. Imagine not having to climb down into the oil-drenched pit of a stamping press to trouble shoot an issue. With IIoT-ready technologies, we can connect to the devices and know exactly what needs fixing. In addition, we can possibly predict the failure before it occurs. This can dramatically reduce machine downtime as well as the time spent in hazardous locations.

Selecting IIoT-ready technologies is only one step of the program to fully leverage the value of Industry 4.0. We must also analyze processes and determine how to implement flexibility into production. After that, we must then discuss where automation technology makes sense to support lean processes. Manufacturers can see into every aspect of their production while manufacturing hundreds of variations of product in the same line, all while assuring quality standards with virtually zero machine downtime.

The difference between Industry 4.0 and IIoT

Industry 4.0 is a cultural philosophy about how we can use increased visibility, flexibility and efficiency to be more competitive. IIoT’s connectivity is an enabling force for Industry 4.0. IIoT connects our devices, our data, our machines and our people to the advantage of our company and customers.  By embracing both, it is easier to achieve positive results and sustain global competitiveness.

Article originally posted on Hydraulics & Pneumatics.

Installation and device replacement – easy and safe

The development and design of a machine is followed by the assembly and commissioning phase. Commissioning is especially time consuming, but the replacement of components or devices can be so as well.

This often raises the question of how to simplify commissioning and optimize component replacement.

The answer is provided by the IO-Link communication interface. IO-Link is the first globally standardized IO technology (IEC 61131-9) that communicates from the controller down to the lowest level.

But how exactly does this help with commissioning and component replacement? This is very simple and will be explained now. Let’s start first with the assembly, installation and commissioning phase.

Easy installation

During installation, the individual components must be electrically connected to each other. While fieldbus use has simplified the installation process, generally speaking, fieldbus cables have a low signal level, are susceptible to interference, have little flexibility, and are expensive due to their shielding. This is where IO-Link comes into play. Because the weaknesses of a fieldbus protocol are negligible with IO-Link.

Included in an IO-Link system are an IO-Link master and one or several IO-Link devices such as sensors or actuators. The IO-Link master is the interface to the controller (PLC) and takes over communication with connected IO-Link devices. The interface uses unshielded, three- or four-conductor standard industrial cables. Therefore the standard communication interface can be integrated into the fieldbus world without effort. Even complex components can be easily connected in this way. In addition, the standard industrial cables are highly flexible and suitable for many bending cycles. Three wires are the standard for the communication between the devices and the IO-Link master and for the power supply voltage. These are easy to connect, extremely cost-effective and their connection is standardized with M5, M8 or M12 connectors.

The commissioning will also be supported by IO-Link. The devices can be parameterized quickly and easily through parameter maintenance or duplication. Annoying manual adjustment of the sensors and actuators is no longer necessary. This saves money and avoids errors. The parameters of the individual devices are stored in the PLC or directly in the IO-Link master and can, therefore, be written directly to the sensor.

Now that we have clarified the advantages of IO-Link during commissioning, we will take a look at the replacement of components.

Communication with IO-Link

Save device replacement during operation

A sensor replacement directly leads to machine downtime. IO-Link enables quick and error-free replacement of sensors. The parameters of a replaced IO-Link sensor are automatically written from the IO-Link master or the PLC to the new sensor. The accessibility of the sensor does not play a major role anymore. In addition, IO-Link devices cannot be mixed up, since they are automatically identifiable via IO-Link.

Efficient format and recipe changes

IO-Link offers ideal properties that are predestined for format adjustment: sufficient speed, full access to all parameters, automatic configuration, and absolute transmission of the measured values. This eliminates the need for time-consuming reference runs. Since the machine control remains permanently traceable, the effort required for error-prone written paper documentation is also saved. Format changes and recipe changes can be carried out centrally via the function blocks of the PLC.

To learn more about the advantages of IO-Link, visit balluff.us/io-link.