Flush, Non-Flush, or Factor 1? Which Inductive is Best for Your Application?

Ever feel like your proximity application isn’t working just right? Maybe it’s the inductive sensor selection.

Understanding the following three inductive mounting principles is key to selecting the ideal sensor for your application and/or figuring out why the one you have isn’t working correctly. So which inductive is best for your application?

Flush (shielded) sensor

Typically having the shortest sensing range, a flush (shielded) sensor has a flush mount sensor illustration sensing field that will only sense objects that approach it from the face of the sensor. The entire face of the sensor can be surrounded by metal and the sensor face sits flush with the mounting surface. It is designed specifically to send the sensing field out the front of the sensor. We see this a lot in metal stamping dies because the flush mounting protects the sensor from the often-destructive atmosphere of the press.

Non-Flush (non-shielded) sensornon-flush sensor illustration

A non-flush (non-shielded) sensor has a sensing field that comes out the side of the front of the sensor, allowing it to sense objects from the side and giving it a greater or longer sensing range. But you can’t have metal around the face of the sensor. Otherwise it might accidentally detect the environment rather than a specific target.

Factor 1 or multi-metal sensor

A Factor 1 or multi-metal sensor adjusts the sensing range for all types of metals, most importantly those that are not steel. An inductive sensor has a correction factor. Based upon the type of metal, the sensing range is reduced. They are specially designed to trigger for most any metal target at the same sensing distance. This is important as many hybrid/electric automotive and consumer goods applications are using more aluminum and custom metals today.

More to consider

When choosing an inductive sensor, think about what you’re trying to detect. For example, if it’s not steel or is iron-based, a factor 1 or a multi-metal inductive sensor that is a special inductive technology will allow you to see all metals, basically at the same distance.

Traditional inductive proxes are designed for steel/ferrous targets. When presented with a metal like aluminum or copper there is a correction factor to reduce the sensing distance. This can cause problems in sensing applications.

Virtually every inductive proximity sensor vendor offers these three modes to allow for adaption to your specific application and target.

Each metal that you’re trying to detect has a different correction factor for an inductive sensor. So if you’re working with aluminum, for example, you’ll want to look for something that has Factor 1 or multi-metal sensing. If you’re trying to detect copper, Factor 1 has the most value.

Many industries – traditional automotive and electric vehicles, appliance, metalworking, forming, bending and even food and beverage industries – rely on inductive sensors in their automation applications. They sense objects without any physical contact with the target or the object being sensed.

https://www.youtube.com/watch?v=ORQ2n0_CPAo

5 Manufacturing Trends to Consider as You Plan for 2022

It’s that time of year again where we all start to forget the current year (maybe that’s OK) and start thinking of plans for the next — strategy and budget season! 2022 is only a few weeks away!

I thought I’d share 5 insights I’ve had about 2022 that you might benefit from as you start planning for next year.

    1. Electric Vehicles

      The electric vehicles manufacturing market is receiving major investments, machine builders are building up expertise, and consumers are trending towards more electric vehicles. According to PEW research, 7% of US adults say they currently own a hybrid or electric vehicle, but 39% say the next time they purchase a vehicle they are at least somewhat likely to seriously consider electric. Traditional automotive won’t go away any time soon, but I see this as a growth generator.

    1. Automation in Agriculture & Food

      Automation in the agriculture, food, beverage and packaging markets is also growing strong with more demand for packaged goods and more SKUs than ever before. Urbanization and shortages in agriculture labor markets are driving investments in automation technologies in manufacturing and on the farm. Robotic agriculture startups seem to be growing faster than weeds and are providing real value for those who are struggling to get product from the field to the factory.

    1. Supply Chain Disruption

      Several economists have said the chip shortage will be with us well into 2023, and now I hear rumors of plastics or other materials having disruptions. Disruption might be the new normal for the short to mid-term. I flew out of LAX a few weeks ago and there were dozens of container ships parked outside the port. We are also seeing a major breakdown of our “over-land” logistics infrastructure. Investment in automation and labor for this market will be vital to a strong recovery. Plan for these things and be willing to have open and honest discussions with your vendors and your customers. Untruths might get you by in the short term but could permanently damage your business relationships for years.

    1. Real not Hyped Sustainability

      As Generation Z (18-24year old) workers increasingly enter our economy, they are pushing us to truly work towards sustainability much more than Millennials did before them. What this means is other markets that I see as growth opportunities are ones where we can have major impact on this, like mining, waste/recycling, and agriculture.

    1. Technology as an HR tool

      All manufacturers will be impacted by the skills-gap and labor shortage if you aren’t already. Part of your strategy for 2022 must include automation and robotics as part of your labor strategy. We need to consider how can we use automation and robotics to do our dull, dirty, dangerous jobs or how can we use automation and robotics to extend the careers of our long-term experienced workers. What disruptive technology could you be investing in to make a real difference in your work processes — 3D printing, machine vision, AR/VR, exoskeletons, drones, virtual twin, AI, predictive maintenance, condition monitoring, smart sensors? Pick something you will do different in 2022. You have to.

What do you see for 2022 that will have a major impact on our businesses?

Choosing the Right Sensor for Your Welding Application

Automotive structural welding at tier suppliers can destroy thousands of sensors a year in just one factory. Costs from downtime, lost production, overtime, replacement time, and material costs  eat into profitability and add up to a big source of frustration for automated and robotic welders. When talking with customers, they often list inductive proximity sensor failure as a major concern. Thousands and thousands of proxes are being replaced and installations are being repaired every day. It isn’t particularly unusual for a company to lose a sensor on every shirt in a single application. That is three sensors a day  — 21 sensors a week — 1,100 sensors a year failing in a single application! And there could be thousands of sensor installations in an  automotive structural assembly line. When looking at the big picture, it is easy to see how this impacts the bottom line.

When I work with customers to improve this, I start with three parts of a big equation:

  • Sensor Housing
    Are you using the right sensor for your application? Is it the right form factor? Should you be using something with a coating on the housing? Or should you be using one with a coating on the face? Because sensors can fail from weld spatter hitting the sensor, a sensor with a coating designed for welding conditions can greatly extend the sensor life. Or maybe you need loading impact protection, so a steel face sensor may be the best choice. There are more housing styles available now than ever. Look at your conditions and choose accordingly.
  • Bunkering
    Are you using the best mounting type? Is your sensor protected from loading impact? Using a protective block can buffer the sensor from the bumps that can happen during the application.
  • Connectivity
    How is the sensor connected to the control and how does that cable survive? The cable is often the problem but there are high durability cable solutions, including TPE jacketed cables, or sacrificial cables to make replacement easier and faster.

When choosing a sensor, you can’t only focus on whether it can fulfill the task at hand, but whether it can fulfill it in the environment of the application.

For more information, visit Balluff.com

IO-Link Simplifies Connectivity on Robotic End-Effectors

In my last two blogs, Rise of the Robots: IO-Link… and Realize Productivity Gains with Smart Robotic Tooling , I shared how implementing IO-Link and incorporating pneumatic and electric smart grippers can help maximize your use of robotics in your applications. In this blog, I will discuss how you can get more from your robots through expanded use of end-effectors in your applications.

As pneumatic air and vacuum systems have been an integral part of automation projects of the past, these systems can also benefit from gains in intelligence moving forward. Smart vacuum generators can provide feedback on the operation of the system; for example, if cups are starting to wear or fail, the smart devices can be used to provide estimates on remaining service life through predictive maintenance calculations. Key components like process sensors, variable regulators, pneumatic grippers, and pneumatic valve manifolds are available with IO-Link technology at a reasonable price. More importantly, these devices dramatically simplify integration, installation, and maintenance with built-in diagnostics and parameterization tools. By utilizing smart pneumatics, we substantially reduce wiring complexity in new installations and expedite downtime repairs.

Easier I/O and Connectivity on Robotic End-Effectors

Figure 1 – An industrial robot with IO-Link I/O hubs and valve manifold control on the EoAT.

However, most people avoid adding these types of smart technologies to end-effectors due to cable management issues or the effort to put high-flex Ethernet or many conductors into the robot dress pack. With IO-Link and its use of standard conductors for communication, integrators and machine builders have been able to install already available conductors in the arm or use lower-cost high-flex sensor cables to communicate with IO-Link smart devices on the end of arm tooling (EoAT).

Smart I/O hubs allow for standard sensors to be used with simplified wiring and on large tooling, valve manifolds can be mounted and controlled on the EoAT (Figure 1). If tool change is needed for the application, non-contact wireless connectivity can send power and signal across an airgap, increasing application capabilities and functionality.

Manufacturers big and small have gained impressive intelligence at the robot’s end-effector using IO-Link electric grippers, smart pneumatics and tooling enabled with IO-Link sensors. As you look to your next robotic automation project, consider how you could reduce integration efforts, improve part quality, enhance production flexibility, gain more process visibility, and increase application capabilities of EoAT. To realize all the benefits of an industrial robot system and earn productivity gains in machine tending, assembly and material handling applications, smart grippers, smart sensors, and smart tooling (enabled by IO-Link) are a necessary part of your next smart factory project.

Realize Productivity Gains with Smart Robotic Tooling

In my last blog post, I shared how implementing IO-Link can expand visibility into your robot implementations and secure a high ROI. In this blog, I will share how you can better capitalize on your robot utilization and gain productivity with pneumatic and electric smart grippers.

Using Pneumatic & Electric Smart Grippers

Figure 1 – Sensors used in grippers provide position and open/closed feedback of the jaw. Photo courtesy of Balluff Worldwide.

In traditional pneumatic gripper applications, sensors are often not utilized. Proper function is assumed, i.e., the jaw opened and closed properly based on the signal sent to the air valve. This can cause unnecessary collisions or process failures due to stuck/worn mechanical components, leaks in the pneumatic lines, or small variations in the process cycle. Adding sensors to the grippers (Figure 1), creates a closed loop and minimal discrete feedback, like open or closed jaw, is provided. With the addition of smart sensors, we can monitor exact gripper jaw position and provide application diagnostics improving the capabilities of the robot end-effector. And finally, gripper intelligence features are expanded even further with electric grippers, giving precise control over the motion profile of the tool and providing detailed condition data on the equipment.

Regularly for smart sensors and smart grippers, these commands and the data are handled via IO-Link communication, which allows for process data, parameter data, and event data to be shared with the PLC and monitored via the Industrial Internet of Things (IIoT) connections. By utilizing IO-Link, both electric and pneumatic grippers can be enabled with intelligence to improve robot implementations.

Part Quality, Inspection, Delicate Part Handling & Measurement

Some of the most common applications like bin-picking, part stacking, or blank de-stacking make assumptions about the part being handled. But the first assumption many people make is that the robot is holding a part. Without sensor verification that the part is in place, how can it be guaranteed that the process is running without defect? And a second assumption that the correct part was loaded into the machine by the operator can cause hundreds of part defects if continued without verification. It is vital that the right part is loaded into the equipment every time, and as many parts look very similar manual inspection isn’t always accurate.  A gripper is an excellent place to gauge and inspect parts as it is physically touching the part. This is done by utilizing an analog position measurement sensor to determine the distance change of the gripper jaw. In addition to this, the position measurement sensor also can provide feedback for tactile gripping applications when handling delicate or precise parts. By utilizing position sensing for inspection and handling of the part, we can improve part quality and reduce production defects.

Production Flexibility, Format Change & Part Identification

In addition to quality inspection, by measuring the part, we can identify the part and make automation changes on-the-fly based upon this information, creating much higher levels of flexibility and making it possible for in-process format change. With one piece of equipment and the utilization of smart sensors on pneumatic grippers or smart electric grippers, more product can be produced. With higher efficiencies manufacturers can realize significant productivity gains.

Figure 2 – GEH6060IL-03-B servo electric gripper with delicate or elastic parts. Photo courtesy of Zimmer Group US, Inc.

In my next blog, I will discuss how expanding the use of end-effectors adds flexibility and are now easier than ever to include in your robotic applications.

Rise of the Robots: IO-Link Maximizes Utilization, Saves Time and Money

Manufacturers around the world are buying industrial robots at an incredible pace. In the April 2020 report from Tractia & Statista, “the global market for robots is expected to grow at a compound annual growth rate (CAGR) of around 26 percent to reach just under 210 billion US dollars by 2025.” But are we gaining everything we can to capitalize on this investment when the robots are applied? Robot utilization is a key metric for realizing return-on-investment (ROI). By adding smart devices on and around the robot, we can improve efficiencies, add flexibility, and expand visibility in our robot implementations. To maximize robot utilization and secure a real ROI there are key actions to follow beyond only enabling a robot; these are: embracing the open automation standard IO-Link, implementing smart grippers, and expanding end-effector application possibilities.

In this blog, I will discuss the benefits of implementing IO-Link. Future blog posts will concentrate on the other actions.

Why care about IO-Link?

First, a quick definition. IO-Link is an open standard (IEC 61131-9) that is more than ten years old and supported by close to 300 component suppliers in manufacturing, providing more than 70 automation technologies (figure 1). It works in a point-to-point architecture utilizing a central master with sub-devices that connect directly to the master, very similar to the way USB works in the PC environment. It was designed to be easy to integrate, simple to support, and fast to implement into manufacturing processes.

Figure 1 – The IO-Link consortium has close to 300 companies providing more than 70 automation technologies.

Using standard cordsets and 24Vdc power, IO-Link has been applied as a retrofit on current machines and designed into the newest robotic work cells. Available devices include pneumatic valve manifolds, grippers, smart sensors, I/O hubs, safety I/O, vacuum generators and more. Machine builders and equipment OEMs find that IO-Link saves them dramatically on engineering, building and the commissioning of new machines. Manufacturers find value in the flexibility and diagnostic capabilities of the devices, making it easier to troubleshoot problems and recover more quickly from downtime. With the ability to pre-program device parameters, troublesome complex-device setup can be automated, reducing new machine build times and reducing part replacement times during device failure on the production line.

Capture Data & Control Automation

Figure 2 – With IIoT-ready IO-Link sensors and masters, data can be captured without impacting the automation control.

The final point of value for robotic smart manufacturing is that IO-Link is set up to support applications for the Industrial Internet of Things (IIoT). IO-Link devices are IIoT ready, enabling Industry 4.0 projects and smart factory applications. This is important as predictive maintenance and big-data applications are only possible if we have the capabilities of collecting data from devices in, around and close to the production. As we look to gain more visibility into our processes, the ability to reach deep into your production systems will provide major new insights. By integrating IIoT-ready IO-Link devices into robotic automation applications, we can capture data for future analytics projects while not interrupting the control of the automation processes (figure 2).

Make 2020 the Year of Smart Manufacturing

1.jpg

As we near the end of 2019, it is time to start thinking of New Year’s resolutions. Mostly, these are personal — a promise to eat better, to work out, or save money. But the clean slate of a fresh year on the calendar is also a good time to reevaluate business practices and look at how we can improve on the work floor. And as we enter a new decade, one of the areas every manufacturer needs to be considering is smart manufacturing.

Smart manufacturing uses real-time data and technology to help you meet the changing demands and conditions in the factory and supply chain to meet customer needs. This accurate, yet seemingly vague, definition means that the implementation of smart manufacturing into the workplace can help you meet an array of issues that negatively impact efficiency and the bottom line.

Implementation of smart manufacturing can:

  • Reduce manufacturing costs
  • Permit higher machine availability
  • Boost overall equipment effectiveness
  • Improve asset utilization
  • Allow for traceability of products and parts
  • Enhance supply chain
  • Ease new technology integration
  • Improve product quality
  • Reduce scrap rates
  • Minimize die crashes
  • Decrease unplanned downtime

These are big claims, but all achievable with the modernization of our systems, which is long overdue for most. According to the latest polls, 4 out of 10 manufacturers have little to no visibility into the real-time status of their manufacturing processes and an even higher percentage are utilizing at least some equipment that is far past its intended lifespan.

Half of manufacturers only become aware of system issues only after a breakdown occurs. This is unacceptable in 2020. Much like we expect our personal vehicles to alert us to upcoming issues — think of your service engine light or oil-life indicator —we need insight into the operation and performance of our manufacturing equipment.

Of course, joining the next industrial revolution comes at a cost, but if we put a dollar value on downtime and evaluate the cost benefit of the expected outcomes, it is hard to argue with the figures.

While we don’t need the start of a new year to make major changes, the flipping of the calendar page can give us the push we need to evaluate where we are and where we want to be. So, what are you waiting for?

Define your vision – Determine what you want to accomplish. Be clear and concise in articulating what you want to accomplish.

Set an objective for 2020 – You don’t have to change everything at once. Growth can come slower. What can you accomplish in the coming year?

Identify tactics and projects – Break down your vision into bite-size goals and projects. Prioritize realistic goals and set deadlines.

Link to KPIs – Make sure your smart manufacturing goals tie to key performance indicators. Having measurable results demonstrates just how effective the changes are and how they are improving business overall.

Assign responsibility – Designate owners to each step of the process. Make it someone’s responsibility to implement, track and report on the efforts. If it is everyone’s job, then it is no one’s job.

IO-Link — Enables Industry 4.0 and Reduces Costs

Where does IO-Link fit on the road to Industry 4.0 and smart manufacturing?

IO-Link is a major enabling force for Industry 4.0 & smart manufacturing. Motivations for flexible manufacturing, efficient production and visibility require that we have more diagnostics and data available for analysis and monitoring. Lot-size-one flexible manufacturing requires that sensors and field devices be able to adapt to a rapidly changing set of requirements. With the parameterization feature of IO-Link slave devices, we can now send new parameters for production to the sensor on a part by part basis if required. For example, you could change a color sensor’s settings from red to green to orange to grey and back to red if necessary, allowing for significantly more flexible production. With efficient production, IO-Link slaves provide detailed diagnostics and condition monitoring information, allowing for trending of data, prediction of failure modes, and, thus, eliminating most downtime as we can act on the prediction data in a controlled & planned way. Trending of information like the current output of a power supply can give us new insights into changes in the machine over time or provide visibility into why a failure occurred.  For example, if a power supply reported a two amp jump in output three weeks ago, we can now ask, “what changed in our equipment 3 weeks ago that caused that?” This level of visibility can help management make better decisions about equipment health and production requirements.

Has IO-Link been widely accepted? Is anything still holding back its implementation?

In the last year IO-Link has become widely accepted. Major automation players like Balluff, Rockwell Automation, Festo, Siemens, SMC, Turck, Banner, Schmalz, Beckhoff, IFM and more than 100 other companies are engaged, promoting and, most importantly, building an installed base of functional IO-Link applications. We have seen installations in almost every industry segment: automotive OEMs, automotive tier suppliers, food & dairy machinery, primary packaging machinery, secondary packaging machinery, conveying systems, automated welding equipment, robot dress packs, on end-effectors of robots, automated assembly stations, palletized assembly lines, steel mills, wood mills, tire presses and more. The biggest roadblock to IO-Link becoming even further expanded in the market is typically a lack of skillset to support automation in the factory or a wariness of IO-Link as “another industrial network.”

What is the latest trend in IO-Link technology?

One of the biggest trends we are seeing with IO-Link technology is the reduction of analog on the machine.  With analog signals there are many “gotchas” that can ruin a good sensor application: electrical noise on the line, poor grounding design, more wiring, expensive analog input cards, and extra integration work. Analog signals cause a lot of extra math that we don’t need or want to do, for example: a linear position measurement sensor is 205mm long with a 4-20mA output tied into a 16bit input card. How many bits are there per mm?  A controls engineer needs to do a lot of mental gymnastics to integrate this into their machine. With IO-Link and a standard sensor cable, the wiring and grounding issues are typically eliminated and since IO-Link sensors report their measurements in the engineering units of the device, the mathematic gymnastics are also eliminated.  In our example, the 205mm long linear position sensor reports 205mm in the PLC, simple, faster to integrate and usually a much better overall application cost.

Connecting Fluid Power to the Industrial IoT and Industry 4.0

The next industrial revolution has already begun. To remain a viable business, it’s time to invest in IIoT and Industry 4.0 applications, regardless of whether you are a “mechanical-only” company or not.Industry 4.0 & Industrial IoT

Industrial Internet of Things

IIoT is simply about connecting devices on the plant floor to a network. These connections provide new ways to generate and collect useful data. This network can provide visibility down into the machine, enabling predictive maintenance and big data analytics. With IIoT, we are able to improve overall equipment effectiveness and provide new insights into our business.

Industry 4.0

On a grander scale, Industry 4.0 is a blend of digitalization, new technology and practical decisions to improve manufacturing. Industry 4.0 aims to achieve unprecedented flexibility, efficient production and visibility at every level of production. Industry 4.0 has impact throughout our processes and across the supply chain. Its philosophy blends lean initiatives, automation, technology, materials, downtime reduction upgrades, and investments in overall equipment effectiveness. This philosophy keeps the current generation of manufacturers competitive in a global market. While the German government set this precedent for Industry 4.0, the entire manufacturing world must now take on this challenge.

Implementing IIoT and Industry 4.0

Standard systems like hydraulic power units (HPUs) are receiving a major boost by becoming IIoT-ready. Traditional on/off flow or pressure switches are upgrading to provide information beyond the simple switch points. In addition, analog devices like temperature, pressure, flow, and level transducers can become IIoT-ready through open standard technologies like IO-Link. These technologies add additional value by incorporating easy-to-report parameters, diagnostics, events and warnings. A standard HPU can become a smart power unit with minimal modification.

The value of IIoT increases with predictive maintenance, remote monitoring and ease of troubleshooting. Imagine not having to climb down into the oil-drenched pit of a stamping press to trouble shoot an issue. With IIoT-ready technologies, we can connect to the devices and know exactly what needs fixing. In addition, we can possibly predict the failure before it occurs. This can dramatically reduce machine downtime as well as the time spent in hazardous locations.

Selecting IIoT-ready technologies is only one step of the program to fully leverage the value of Industry 4.0. We must also analyze processes and determine how to implement flexibility into production. After that, we must then discuss where automation technology makes sense to support lean processes. Manufacturers can see into every aspect of their production while manufacturing hundreds of variations of product in the same line, all while assuring quality standards with virtually zero machine downtime.

The difference between Industry 4.0 and IIoT

Industry 4.0 is a cultural philosophy about how we can use increased visibility, flexibility and efficiency to be more competitive. IIoT’s connectivity is an enabling force for Industry 4.0. IIoT connects our devices, our data, our machines and our people to the advantage of our company and customers.  By embracing both, it is easier to achieve positive results and sustain global competitiveness.

Article originally posted on Hydraulics & Pneumatics.

Everything You Need to Know to be Successful at IIoT

Do you need to quickly ramp up your IIoT knowledge? Do you want to know why manufacturers are investing in IIoT? For years this blog has shared many of the individual values that smart manufacturing, Industry 4.0 and the Industrial Internet of Things can bring to manufacturers. I am going to quickly summarize the key findings and provide links to the full entries so you can easily have at your fingertips all of the advice you need to be successful at IIoT.

  • Industry 4.0 & IIoT, who cares?!?! You should. Even in 2016, IIoT investments were rapidly growing and more than a fifth of technology budgets were being invested in data analytics, IIoT and Industry 4.0. This has not slowed down in 2018!
  • 5 Common IIoT Mistakes and How to Avoid Them. The first point is the best point, every IIoT project that ignores the IT department is doomed for failure. IT & OT must work closely together for a successful data project in the factory.
  • Capture vs Control – The Hidden Value of True IIoT Solutions. In automation, everything seems to revolve around the PLC. This is very much an Industry 3.0 way of thinking. As we take on the next industrial revolution, devices can talk to each other in new and incredible ways, and we can capture data without impacting a working production line or modifying PLC code.
  • JSON Objects and How They Can Streamline an IIoT Application. How the data is captured is important to understand when you are ready to take action and implement your first project. By utilizing web tools like JSON, we can effectively capture data for IIoT applications.
  • What does that “Ready for IIoT” tag really mean? But how do I select a device that is going to be actually ready for IIoT? Features like condition monitoring, automatic configuration and scalability make for robust IIoT projects that can stand the test of time.

When you are convinced and ready to take action on an IIoT project kickoff for an Industry 4.0 team, take a look at the blogs below which can help you make an action plan for success and get buy-in from management.

  • How to Balance the IIoT Success Equation. What should you and your team be focusing on? How do we set a strategy, manage data, and take action to run a successful project? All of these need to be in balance and planned for to have long term vitality in your IIoT investments.
  • How do I justify an IIoT investment to my boss? We can show ROI through reduced downtime, by tying our project to corporate goals of productivity or utilization and you can point out that your competitors are heavily investing in this topic.
  • Enabling the Visibility Provided by the Industrial Internet of Things. And last but not least, there is a seriously strong technology available on the market from virtually every automation vendor that enables and scales IIoT like no other. That technology is IO-Link. With IO-Link you can create visibility down to every sensor in the plant and gain the flexibility and reliability that you need for sustainable competitiveness in the global market.

To learn more about IO-Link and how it enables machine builders and manufacturers to be successful with IIoT, check out this interactive infographic.