Capacitive, the Other Proximity Sensor

What is the first thing that comes to mind if someone says “proximity sensor?” My guess is the inductive sensor, and justly so because it is the most used sensor in automation today. There are other technologies that use the term proximity in describing the sensing mode, including diffuse or proximity photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high-frequency sound waves to detect objects. All these sensors detect objects that are in close proximity to the sensor without making physical contact. One of the most overlooked or forgotten proximity sensors on the market today is the capacitive sensor.

Capacitive sensors are suitable for solving numerous applications. These sensors can be used to detect objects, such as glass, wood, paper, plastic, or ceramic, regardless of material color, texture, or finish. The list goes on and on. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue, and so forth, and they can detect levels of solids like plastic granules, soap powder, sand, and just about anything else. Levels can be detected either directly, when the sensor touches the medium, or indirectly when it senses the medium through a non-metallic container wall.

Capacitive sensors overview

Like any other sensor, there are certain considerations to account for when applying capacitive, multipurpose sensors, including:

1 – Target

    • Capacitive sensors can detect virtually any material.
    • The target material’s dielectric constant determines the reduction factor of the sensor. Metal / Water > Wood > Plastic > Paper.
    • The target size must be equal to or larger than the sensor face.

2 – Sensing distance

    • The rated sensing distance, or what you see in a catalog, is based on a mild steel target that is the same size as the sensor face.
    • The effective sensing distance considers mounting, supply voltage, and temperature. It is adjusted by the integral potentiometer or other means.
    • Additional influences that affect the sensing distance are the sensor housing shape, sensor face size, and the mounting style of the sensor (flush, non-flush).

3 – Environment

    • Temperatures from 160 to 180°F require special considerations. The high-temperature version sensors should be used in applications above this value.
    • Wet or very humid applications can cause false positives if the dielectric strength of the target is low.
    • In most instances, dust or material buildup can be tuned out if the target dielectric is higher than the dust contamination.

4 – Mounting

    • Installing capacitive sensors is very similar to installing inductive sensors. Flush sensors can be installed flush to the surrounding material. The distance between the sensors is two times the diameter of the sensing distance.
    • Non-flush sensors must have a free area around the sensor at least one diameter of the sensor or the sensing distance.

5 – Connector

    • Quick disconnect – M8 or M12.
    • Potted cable.

6 – Sensor

    • The sensor sensing area or face must be smaller or equal to the target material.
    • Maximum sensing distance is measured on metal – reduction factor will influence all sensing distances.
    • Use flush versions to reduce the effects of the surrounding material. Some plastic sensors will have a reduced sensing range when embedded in metal. Use a flush stainless-steel body to get the full sensing range.

These are just a few things to keep in mind when applying capacitive sensors. There is not “a” capacitive sensor application – but there are many which can be solved cost-effectively and reliably with these sensors.

Converting Analog Signals to Digital for Improved Performance

We live in an analog world, where we experience temperatures, pressures, sounds, colors, etc., in seemingly infinite values. There are infinite temperature values between 70-71 degrees, for example, and an infinite number of pressure values between 50-51 psi.

Sensors today continue to use analog circuitry to measure a natural process, but more often, the electrical analog signal is then converted to a digital (binary) signal.

How a signal is converted from analog to digital?

A variety of mechanical and electrical transducer technologies, such as Bourdon tube, piezoresistive, manometers, strain gages, and capacitive can be found in a typical pressure sensor. Any one of these can be used to sense pressure and convert the physical pressure into an analog electrical signal. The analog output continuously varies as the pressure rises and lowers. For many sensors of the past, the story ends here. The sensor works well if certain precautions are met, but enhanced features are limited. This sensor would be comprised of electrical components, such as diodes, capacitors, op-amps, and resistors, with typical signal outputs of 0-5VDC, 0-10VDC, +/- 10V, 4-20mA, 0-20mA, etc.

Analog output sensors provide an infinitely varying signal and converting it to digital cannot improve the accuracy of the measured value. Nor will it increase the amount of information we receive from the natural world. So why do we do it?

Why convert to digital signals?

There are several good reasons for converting analog to digital signals. Analog uses more power than digital and it’s more difficult to encrypt, decode, or synchronize. Analog outputs also have a slow rate of transmission. But typically, the biggest reasons are that analog signals weaken and pick up electrical noise as they traverse, and they’re difficult to process and store.

Noises and transmission rates

Electrical energy from motors, contactors, and other electrical devices can become induced into the sensor’s analog electronics, creating noise on the signal. Analog amplifiers can increase the signal strength to extend transmission distances, but it also amplifies the induced noise. The transmission of digital signals, on the other hand, is faster and has negligible distortion. And although a digital signal may need an amplifier for long lengths, too, digital regeneration can more easily correct any 0/1 errors and amplify the signal without amplifying any noise.

Converting a continuously variable signal into 1s and 0s

An analog-to-digital converter (ADC) is an integrated circuit that performs the conversion. While this process includes many important steps, and there are several popular techniques, each has three main processes: sampling, quantizing, and encoding.

Sampling is a process used to select a subset of values from a larger set. In our case, we are starting with an infinite set of values from the analog signal and want to capture a snapshot of the signal at certain time intervals. With a sampling rate of 500Hz, the ADC will grab and hold a value from the analog signal 500 times per second.

Once the signal is sampled, it is quantized. This involves mapping the sample from a set of infinite signal values down to a finite number of values. If there were 100 available increments for quantizing a 0-5vdc signal, for example, the infinite output would now be reduced to 100 available signal level choices with 0 volts mapping as 0, 2.5 volts mapping as 50, and 5 volts as 99.

Lastly, the quantized signal level is encoded to binary form, where it can benefit from the processing, storage, and transmission advantages that come with a digital signal. A quantized level of 50, encoding with an 8-bit processor, would be 00011001, equating to a 2.5vdc signal.

In actual practice, we do not use 100 increments to quantize. The ADC, which is based on the number of bits within the processor within the ADC chip, determines the amount of quantizing increments or levels. Eight bits provide 256 increments. Twelve bits provide 4096 increments or steps, as it is also referred.

Is 12 bits worth of increments (4096 steps) enough resolution?

5VDC /4096 steps = .00122V/step or 1.22mV/step

In most applications, a small step of 1.22mV is acceptable. The original analog signal is now sampled at a specific time, and an increment closest to the value is chosen as the signal level. The quantizing process in this case will round the infinite analog value that was sampled to the nearest multiple of 1.22mV.

The output signal is now a square wave, rather than the original sinusoidal. The peak of each square wave is always the same amplitude, with the peak of the wave representing a “1” and the trough or zero amplitude being a “0.”

The sensor output, now digitized, is capable of further processing, offering enhanced product features such as faster transmission rates, negligible distortion, and the ability to communicate to advanced systems such as IO-Link.

A digital to analog converter (DAC) can convert the signal back to analog, but complete restoration is no longer possible due to the samples taken only at specific times, and the quantizing step rounding off to the nearest increment.

So, the next time you see a spec sheet that says “12-bit resolution,” rest assured you are working with a sensor that has some enhanced capabilities.

Security in the World of the Industrial Internet of Things

The Industrial Internet of Things (IIoT) is becoming an indispensable part of the manufacturing industry, leading to real-time monitoring and an increase in overall equipment effectiveness (OEE) and productivity. Since the machines are being connected to the intranet and sometimes to the Internet for remote monitoring, this brings a set of challenges and security concerns for these now-connected devices.

 What causes security to be so different between OT and IT?

Operational Technology (OT) manufacturing equipment is meant to run 24/7. So, if a bug is found that requires a machine to be shut down for an update, that stop causes a loss in productivity. So, manufacturers can’t rely on updating operational equipment as frequently as their Information Technology (IT) counterparts.

Additionally, the approach of security for OT machines has largely been “security through obscurity.” If, for example, a machine is not connected to the network, then the only way to access the hardware is to access it physically.

Another reason is that OT equipment can have a working lifetime that spans decades, compared to the typical 2-5-year service life of IT equipment. And when you add new technology, the old OT equipment becomes almost impossible to update to the latest security patches without the effort and expense of upgrading the hardware. Since OT equipment is in operation for such a long time, it makes sense that OT security focuses on keeping equipment working continuously as designed, where IT is more focused on keeping data available and protected.

These different purposes makes it hard to implement the IT standard on OT infrastructure. But that being said, according to Gartner’s 80/20 rule-of-thumb, 80 percent of security issues faced in the OT environment are the same faced by IT, while 20 percent are domain specific on critical assets, people, or environment. With so many security issues in common, and so many practical differences, what is the best approach?

The solution

The difference in operation philosophy and goals between IT and OT systems makes it necessary to consider IIoT security when implementing the systems carefully. Typical blanket IT security systems can’t be applied to OT systems, like PLCs or other control architecture, because these systems do not have built-in security features like firewalls.

We need the benefits of IIoT, but how do we overcome the security concerns?

The best solution practiced by the manufacturing industry is to separate these systems: The control side is left to the existing network infrastructure, and IT-focused work like monitoring is carried out on a newly added infrastructure.

The benefit of this method is that the control side is again secured by the method it was designed for – “security by obscurity” – and the new monitoring infrastructure can take advantage of the faster developments and updates of the IT lifecycle. This way, the operations and information technology operations don’t interfere with each other.

Choosing Between M18 and Flatpack Proxes

Both M18s and flatpacks are inductive or proximity sensors that are widely used in mechanical engineering and industrial automation applications. Generally, they are similar in that they produce an electromagnetic field that reacts to a metal target when it approaches the sensor head. And the coil in both sensors is roughly the same size, so they have the same sensing range – between 5 to 8 millimeters. They also both work well in harsh environments, such as welding.

There are, however, some specific differences between the M18 and flatpack sensors that are worth consideration when setting up production.

M18

One benefit of the M18 sensor is that it’s adjustable. It has threads around it that allow you to adjust it up or down one millimeter every time you turn it 360 degrees. The M18 can take up a lot of space in a fixture, however. It has a standard length of around two inches long and, when you add a connector, it can be a problem when space is an issue.

Flatpack

A flatpack, on the other hand, has a more compact style and format while offering the same sensing range. The mounting of the flatpack provides a fixed distance so it offers less adjustability of the M18, but its small size delivers flexibility in installation and allows use in much tighter fixes and positions.

The flatpack also comes with a ceramic face and a welding cable, especially suited for harsh and demanding applications. You can also get it with a special glass composite protective face, a stainless-steel face, or a steel face with special coatings on it.

Each housing has its place, based on your detection application, of course. But having them both in your portfolio can expand your ability to solve your applications with sensor specificity.

Check out this previous blog for more information on inductive sensors and their unlimited uses in automation.

Inductive Sensors and Their Unlimited Uses in Automation

Inductive sensors (also known as proximity sensors or proxes) are the most commonly used sensors in mechanical engineering and industrial automation. When they were invented in the 1960s, they marked a milestone in the development of control systems. In a nutshell, they generate an electromagnetic field that reacts to metal targets that approach the sensor head. They even work in harsh environments and can solve versatile applications.

There are hardly any industrial machines that work without inductive sensors. So, what can be solved with one, two, three, or more of them?

What can you do with one inductive sensor?

Inductive sensors are often used to detect an end position. This could be in a machine for end-of-travel detection, but also in a hydraulic cylinder or a linear direct drive as an end-of-stroke sensor. In machine control, they detect many positions and trigger other events. Another application is speed monitoring with a tooth wheel.

What can you do with two inductive sensors?

By just adding one more sensor you can get the direction of rotational motion and take the place of a more expensive encoder. In a case where you have a start and end position, this can also be solved with a second inductive sensor.

What can you do with three inductive sensors?

In case of the tooth wheel application, the third sensor can provide a reference signal and the solution turns into a multiturn rotary encoder.

What can I do with four inductive sensors and more?

For multi-point positioning, it may make sense to switch to a measurement solution, which can also be inductive. Beyond that, an array of inductive sensors can solve identification applications: In an array of 2 by 2 sensors, there are already 16 different unique combinations of holes in a hole plate. In an array of 3 by 3, it would be 512 combinations.

Predictive Maintenance vs. Predictive Analytics, What’s the Difference?

With more and more customers getting onboard with IIoT applications in their plants, a new era of efficiency is lurking around the corner. Automation for maintenance is on the rise thanks to a shortage of qualified maintenance techs coinciding with a desire for more efficient maintenance, reduced downtime, and the inroads IT is making on the plant floor. Predictive Maintenance and Predictive Analytics are part of almost every conversation in manufacturing these days, and often the words are used interchangeably.

This blog is intended to make the clear distinction between these phrases and put into perspective the benefits that maintenance automation brings to the table for plant management and decision-makers, to ensure they can bring to their plants focused innovation and boost efficiencies throughout them.

Before we jump into the meat of the topic, let’s quickly review the earlier stages of the maintenance continuum.

Reactive and Preventative approaches

The Reactive and Preventative approaches are most commonly used in the maintenance continuum. With a Reactive approach, we basically run the machine or line until a failure occurs. This is the most efficient approach with the least downtime while the machine or line runs. Unfortunately, when the machine or line comes to a screeching stop, it presents us with the most costly of downtimes in terms of time wasted and the cost of machine repairs.

The Preventative approach calls for scheduled maintenance on the machine or line to avoid impending machine failures and reduce unplanned downtimes. Unfortunately, the Preventative maintenance strategy does not catch approximately 80% of machine failures. Of course, the Preventative approach is not a complete waste of time and money; regular tune-ups help the operations run smoother compared to the Reactive strategy.

Predictive Maintenance vs. Predictive Analytics

As more companies implement IIoT solutions, data has become exponentially more important to the way we automate machines and processes within a production plant, including maintenance processes. The idea behind Predictive Maintenance (PdM), aka condition-based maintenance, is that by frequently monitoring critical components of the machine, such as motors, pumps, or bearings, we can predict the impending failures of those components over time. Hence, we can prevent the failures by scheduling planned downtime to service machines or components in question. We take action based on predictive conditions or observations. The duration between the monitored condition and the action taken is much shorter here than in the Predictive Analytics approach.

Predictive Analytics, the next higher level on the maintenance continuum, refers to collecting the condition-based data over time, marrying it with expert knowledge of the system, and finally applying machine learning or artificial intelligence to predict the event or failure in the future. This can help avoid the failure altogether. Of course, it depends on the data sets we track, for how long, and how good our expert knowledge systems are.

So, the difference between Predictive Maintenance and Predictive Analytics, among other things, is the time between condition and action. In short, Predictive Maintenance is a stepping-stone to Predictive Analytics. Once in place, the system monitors and learns from the patterns to provide input on improving the system’s longevity and uptime. Predictive Maintenance or Preventative Maintenance does not add value in that respect.

While Preventative Maintenance and Predictive Maintenance promises shorter unplanned downtimes, Predictive Analytics promises avoidance of unplanned downtime and the reduction of planned downtime.

The first step to improving your plant floor OEE is with monitoring the conditions of the critical assets in the factory and collecting data regarding the failures.

Other related Automation Insights blogs:

Using LoRaWan in Industrial Environments?

What are LoRa and LoRaWan? How are they used and are they beneficial in industrial environments?

LoRa vs LoRaWan 

LoRa, which stands for “long range,” is the physical communication layer used by many devices. Although it has a long range, its bandwidth is minuscule compared to a WIFI network. It’s been used to collect weather data from multiple weather stations simultaneously from kilometers away and with minimal battery power.

LoRaWan, which stands for “long range wide area network,” is a protocol that runs on the LoRa communication layer. When a location has no cellphone reception or WIFI/Internet access, LoRaWan can travel kilometers with packets of data consistently with minimal investment.

Benefits of LoRa and LoRaWan

LoRa and LoRaWan technology make it possible to add hundreds of non-timed critical sensors to one LoRaWan gateway. Due to the bandwidth limitations, packets of data need to be sent routinely. A good example of differentiation is sending an instant text message with your phone versus sending a picture that might take more time.

Using LoRaWan serves as a perfect solution for the instantaneous inventory of bulk and measurable stock. Being able to do this will drastically enhance purchasing power and improve overhead reduction. It also eliminates the cost and troubleshooting of wiring, in addition to avoiding cellphone service charges.

Looking Into & Through Transparent Material With Photoelectric Sensors

Advance automated manufacturing relies on sensor equipment to ensure each step of the process is done correctly, reliably, and effectively. For many standard applications, inductive, capacitive, or basic photoelectric sensors can do a fine job of monitoring and maintaining the automated manufacturing process. However, when transparent materials are the target, you need a different type of sensor, and maybe even need to think differently about how you will use it.

What are transparent materials?

When I think of transparent materials, water, glass, plexiglass, polymers, soaps, cooling agents, and packaging all come to mind. Because transparent material absorbs very little of the emitted red LED light, standard photoelectric sensors struggle on this type of application. If light can make its way back to the receiver, how can you tell if the beam was broken or not? By measuring the amount of light returned, instead of just if it is there or not, we can detect a transparent material and learn how transparent it is.

Imagine being able to determine proper mixes or thicknesses of liquid based on a transparency scale associated to a value of returned light. Another application that I believe a transparent material photoelectric senor would be ideal for is the thickness of a clear bottle. Imagine the wall thickness being crucial to the integrity of the bottle. Again, we would measure the amount of light allowed back to the receiver instead of an expensive measurement laser or even worse, a time-draining manual caliper.

Transparent material sensor vs. standard photoelectric sensor

So how does a transparent material sensor differ from a standard photoelectric sensor? Usually, the type of light is key. UV light is absorbed much greater than other wavelengths, like red or blue LEDs you find in standard photoelectric sensors. To add another level, you polarize that UV light to better control the light back into the receiver. Polarized UV light with a polarized reflector is the best combination. This can be done on a large or micro scale based on the sensor head size and build.

Uses for transparent material sensor include packaging trays, level tubes, medical tests, adhesive extrusion, and bottle fill levels, just to name a few. Transparent materials are everywhere, and the technology has matured. Make sure you are looking into specialized sensor technologies and working through best set-up practices to ensure reliable detection of transparent materials.

How IO-Link Sensors With Condition Monitoring Features Work With PLCs

As manufacturers continually look for ways to maximize productivity and eliminate waste, automation sensors are taking on a new role in the plant. Once, sensors were used only to provide detection or measurement data so the PLC could process it and run the machine. Today, sensors with IO-Link measure environmental conditions like temperature, humidity, ambient pressure, vibration, inclination, operating hours, and signal strength. By setting alarm thresholds, it’s possible to program the PLC to use the resulting condition monitoring data to keep machines running smoothly.

Real-time data for real-time response

A sensor with condition monitoring features allows a PLC to use real-time data with the same speed it uses a sensor’s primary process data. This typically requires setting an alarm threshold at the sensor and a response to those alarms at the PLC.

When a vibration threshold is set up on the sensor and vibration occurs, for example, the PLC can alert the machine operator to quickly check the area, or even stop the machine, to look for a product jam, incorrect part, or whatever may be causing the vibration. By reacting to the alarm immediately, workers can reduce product waste and scrap.

Inclination feedback can provide diagnostics in troubleshooting. Suppose a sensor gets bumped and no longer detects its target, for example. The inclination alarm set in the sensor will indicate after a certain degree of movement that the sensor will no longer detect the part. The inclination readout can also help realign the sensor to the correct position.

Detection of other environmental factors, including humidity and higher-than-normal internal temperatures, can also be set, providing feedback on issues such as the unwanted presence of water or the machine running hotter than normal. Knowing these things in real-time can stop the PLC from running, preventing the breakdown of other critical machine components, such as motors and gearboxes.

These alarm bits can come from the sensors individually or combined together inside the sensor. Simple logic, like OR and AND statements, can be set on the sensor in the case of vibration OR inclination OR temperature alarm OR humidity, output a discrete signal to pin 2 of the sensors. Then pin 2 can be fed back through the same sensor cable as a discrete alarm signal to the PLC. A single bit showing when an alarm occurs can alert the operator to look into the alarm condition before running the machine. Otherwise, a simple ladder rung can be added in the PLC to look at a single discrete alarm bit and put the machine into a safe mode if conditions require it.

In a way, the sensor monitors itself for environmental conditions and alerts the PLC when necessary. The PLC does not need to create extra logic to monitor the different variables.

Other critical data points, such as operating hours, boot cycle counters, and current and voltage consumption, can help establish a preventative and predictive maintenance schedule. These data sets are available internally on the sensors and can be read out to help develop maintenance schedules and cut down on surprise downtimes.

Beyond the immediate benefits of the data, it can be analyzed and trended over time to see the best use cases of each. Just as a PLC shouldn’t be monitoring each alarm condition individually, this data must not be gathered in the PLC, as there is typically only a limited amount of memory, and the job of the PLC is to control the machines.

This is where the IT world of high-level supervision of machines and processes comes into play. Part two of my blog will explore how to integrate this sensor data into the IT level for use alongside the PLC.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.