Automation, Networking and Sensors in Intralogistics

The intralogistics industry has made significant investments in automation since 2020. The boom in ecommerce, accelerated by the pandemic, pressured online retailers to improve their warehouse operations through automation. Traditional manufacturers and non-ecommerce (B2B) firms have been slower in automating their intralogistics operations, and penetration is still relatively low. This is rapidly changing, driven by market factors such as labor issues, product individualization, supply chain challenges, higher efficiency/productivity/quality, faster delivery, and wider adoption of ecommerce by B2B firms.

The deeper penetration of automation in intralogistics means that the applications are now using or adapting many of the same technologies and smart manufacturing processes employed in traditional manufacturing: robotics, PLCs and motion controllers, industrial networks, sensors, motors and drives, RFID/code reading, vision systems, human-machine interfaces, automation software, IIoT/Industry 4.0, and more. This blog focuses on the use of sensors, networking, and RFID/code reading in common intralogistics processes:

    • Conveying and transporting
    • Storage and retrieval
    • Sorting and picking

Within these areas, there are several key applications. I’ll go into more detail on solutions for each of them:

    • Object detection
    • Controls architecture
    • Traceability
    • Condition monitoring

Object detection: Photoelectric, inductive, ultrasonic, and capacitive sensors are used to reliably detect objects on conveyors, container fill levels, and object presence, position, shape, color, distance, or thickness. Photoelectric sensors are often used to detect bottles, totes, or material on conveyors or to detect items in racks or on transporters. Inductive sensors can detect metal objects on conveyors or in racks, but also the position of parts of the equipment to verify position, alignment, or proper operation. While photoelectric or inductive sensors can also detect objects for picking and sorting applications, vision systems are often used when robots are involved in the process.

Controls architecture: Connecting sensors and devices to the control system can be time-consuming and complicated, involving long cables, many terminations, and difficult troubleshooting. The automation industry, therefore, uses industrial networking to simplify controls architectures. It is an especially interesting and cost-effective approach for intralogistics because the facilities are often large, with long distances and many sensors. Network blocks and hubs using technologies such as IO-Link make it easy and inexpensive to connect many sensors using common M12 or M8 cables. IO-Link not only gathers standard process data but also provides diagnostic/event and parameter data. This simplifies detecting the individual device status and troubleshooting mistakes in wiring or broken sensors.  When implementing automation, especially for large-scale conveying or storage and retrieval systems, companies typically apply a networked controls architecture across most intralogistics processes.

Traceability: Tracking the movement of goods through a facility is a critical part of the intralogistics process. The most used technologies are RFID and code reading; selection depends on the application. RFID is generally available in low (LF), high (HF), and ultra-high (UHF) frequencies. LF and HF RFID are good for short-range part tracking and production control where data needs to be read/written to a single tag at a time (for example, items on a conveyor). UHF RFID systems are better for longer distance detection of multiple tags (for example, tracking pallets through a facility). Coder readers are popular in intralogistics facilities because bar codes are common, simple, and easy to use. Reader technology has evolved to address past challenges such as reading multiple codes at once, imprecise code location, and code type variation. In some cases, companies use code reading for positioning storage systems or navigating AGVs.

Condition monitoring: Reducing unplanned downtime and improving Overall Equipment Effectiveness (OEE) are focus topics in intralogistics automation, and condition monitoring offers a solution to these challenges. A wide variety of sensors are available to detect vibration, temperature, pressure, flow, and humidity to help monitor equipment conditions. This sensor data can be easily gathered through the controls architecture or “add-on” data gateways, with IO-Link offering a wide variety of sensor and gateway choices. The most common intralogistics condition monitoring applications involve motion (motors, gearboxes, bearings, shafts, pumps, fans) for conveyors, storage/retrieval, and transport systems.

The use of automation in intralogistics will continue to grow rapidly as both ecommerce firms and traditional manufacturers seek to optimize their warehouse, conveying, and picking/sorting operations in response to industry and societal trends. These companies are realizing that worker shortages, faster delivery, improved quality, higher efficiency, mass customization, and supply chain issues are best addressed by automation.

Automation Insights: Top 10 Blogs From 2023

In 2023, the industrial automation sector experienced significant advancements and transformative trends, shaping the landscape of manufacturing and production processes. Listed below are our top 10 blogs highlighting some of these advancements, from streamlined changeover processes using RFID to machine safety levels determined through risk assessments and a proactive approach to unplanned downtime using condition monitoring. Other blogs explored UHF RFID considerations, communication protocol analysis, camera selection guidance for engineers, machine safety practices emphasis, and discussions on IO-Link and MQTT benefits for automation projects.

    1. Using RFID Technology for Rapid Changeover

In today’s tight economy, marked by high inflation and supply chain issues, the need to enhance product flexibility has become increasingly important. Most manufacturing lines these days are set up to run multiple work orders of the same product type based on specific requirements. The goods produced at the manufacturer line are still the same, but the package size can change. The raw materials that start the process might be the same, but other component parts and tools on the machine that help with the different packaging sizes must be replaced. The process of converting one product line or machine to another is known as changeover. This blog explores how Radio Frequency Identification (RFID) technology can revolutionize changeover by eliminating manual verification and adjustments.

Read more.

    1. Understanding Machine Safety: The Power of Risk Assessments

My last blog post was about machine safety with a focus on the different categories and performance levels of machine safety circuits. But I just briefly touched on how to determine these levels. By default, we could design all equipment with the highest-level category and performance levels of safety with an abundance of caution, but this approach could be extremely expensive and not the most efficient.

Read more.

    1. Getting Started With Condition Monitoring

Unplanned downtime is consistently identified as one of the top manufacturing issues. Condition monitoring can offer a fairly simple way to start addressing this issue and helps users become more proactive in addressing and preventing impending failures of critical equipment by using data to anticipate problems.

Read more.

    1. Sensing Ferrous and Non-Ferrous Metals: Enhancing Material Differentiation

Detecting metallic (ferrous) objects is a common application in many industries, including manufacturing, automotive, and aerospace. Inductive sensors are a popular choice for detecting metallic objects because they are reliable, durable, and cost-effective. Detecting a metallic object, however, is not always as simple as it seems, especially if you need to differentiate between two metallic objects. In such cases, it is crucial to understand the properties of the metals you are trying to detect, including whether they are ferrous or non-ferrous.

Read more.

    1. Considerations When Picking UHF RFID

If you’ve attempted to implement an ultra-high frequency (UHF) RFID system into your facility, you might have run into some headaches in the process of getting things to work properly. If you are looking to implement UHF RFID, but haven’t had the chance to set things up yet, then this blog might be beneficial to keep in mind during the process.

Read more.

    1. Comparing IO-Link and Modbus Protocols in Industrial Automation

In the realm of industrial automation, the seamless exchange of data between sensors, actuators, and control systems is critical for optimizing performance, increasing efficiency, and enabling advanced functionalities. Two widely used communication protocols, IO-Link and Modbus, have emerged to facilitate this data exchange. In this blog, I’ll analyze the characteristics, strengths, and weaknesses of both protocols to help you choose the right communication standard for your industrial application.

Read more.

    1. Exploring Industrial Cameras: A Guide for Engineers in Life Sciences, Semiconductors, and Automotive Fields 

In the bustling landscape of industrial camera offerings, discerning the parameters that genuinely define a camera’s worth can be a daunting task. This article serves as a compass, steering you through six fundamental properties that should illuminate your path when selecting an industrial camera. While the first three aspects play a pivotal role in aligning with your camera needs, the latter three hold significance if your requirements lean towards unique settings, external conditions, or challenging light environments.

Read more.

    1. Focusing on Machine Safety

Machine safety refers to the measures taken to ensure the safety of operators, workers, and other individuals who may encounter or work in the vicinity of machinery. Safety categories and performance levels are two important concepts to evaluate and design safety systems for machines. A risk assessment is a process to identify, evaluate, and prioritize potential hazards and risks associated with a particular activity, process, or system. The goal of a risk assessment is to identify potential hazards and risks and to take steps to prevent or mitigate those risks. The hierarchy of controls can determine the best way to mitigate or eliminate risk. We can use this hierarchy, including elimination, substitution, engineering, and administrative controls, and personal protective equipment (PPE), to properly mitigate risk. Our focus here is on engineering controls and how they relate to categories and performance levels.

Read more.

    1. Why Choose an IO-Link Ecosystem for Your Next Automation Project?

By now we’ve all heard of IO-Link, the device-level communication protocol that seems magical. Often referred to as the “USB of industrial automation,” IO-Link is a universal, open, and bi-directional communication technology that enables plug-and-play device replacement, dynamic device configuration, centralized device management, remote parameter setting, device level diagnostics, and uses existing sensor cabling as part of the IEC standard accepted worldwide.

Read more.

    1. Using MQTT Protocol for Smarter Automation

In my previous blog post, “Edge Gateways to Support Real-Time Condition Monitoring Data,” I talked about the importance of using an edge gateway to gather the IoT data from sensors in parallel with a PLC. This was because of the large data load and the need to avoid interfering with the existing machine communications. In this post, I want to delve deeper into the topic and explain the process of implementing an edge gateway.

Read more.

We appreciate your dedication to Automation Insights in 2023 and look forward to growth and innovation in 2024.

RFID: The Key to Smarter Access Control and Enhanced Security

In the rapidly advancing landscape of access control systems, RFID (Radio Frequency Identification) is a powerful and versatile solution, revolutionizing the way organizations manage secure access. Using radio waves for data exchange, RFID tags embedded in key cards, fobs, wristbands, or stickers seamlessly communicate with RFID readers, offering a streamlined and secure access process. This blog explores the intricate workings of RFID access control systems, shedding light on their simplicity of operation, prevention of unauthorized access, protection of intellectual property, enhanced operational efficiency, scalability, improved safety and security, and lower maintenance costs.

Simplicity of operation

To gain access to an automation controller or HMI, the user presents his or her RFID card, equipped with an embedded antenna and circuitry, to the RFID reader typically installed at or near an operator control station. When the card comes within the reader’s range, it induces a current, activating and reading the card.

RFID badges ensure only only authorized individuals can use the machines or get into specific areas. This makes everything safer and faster. Plus, it’s super easy to use: just show your card to the reader.

The simplicity extends to RFID access control systems are incredibly simple to operate, where users receive RFID tags, cards, key fobs, or even wristbands. To gain access to a restricted area, the user simply presents the RFID tag to the readerwhich scans the tag, verifies the stored information, and grants or denies access. There’s no need to remember complex codes or carry physical keys, making the process straightforward and hassle-free.

Prevention of unauthorized access

RFID access control systems enhance security by allowing access only to authorized individuals. This helps businesses avoid potential costs associated with security incidents such as theft and vandalism. If a security incident does occur, the data collected by the RFID system can also aid in investigations, potentially leading to recovery of losses.

In a competitive industrial setting, safeguarding intellectual property and trade secrets is also crucial. Unauthorized access to machinery and sensitive areas can result in industrial espionage or theft of valuable information, highlighting the importance of RFID access control systems that ensure entry only for authorized individuals.

Enhanced operational efficiency

RFID access control systems streamline the process of granting access to authorized personnel, thereby reducing administrative effort and increasing operational efficiency. With RFID, lost or stolen tags can be easily deactivated and replaced, eliminating the need for rekeying locks or reissuing physical keys.

Scalability

RFID systems are easily scalable, allowing for cost-effective expansion as a company grows. Traditional access control systems often require significant investment to expand, particularly in large facilities. This expansion typically involves issuing new tags and installing additional readers, which can be done at a relatively low cost.

Improved safety and security

RFID access control systems improve safety in industrial environments by allowing only authorized personnel to operate machinery. This minimizes the risk of accidents caused by untrained or unauthorized individuals handling equipment. The unique signal emitted by RFID tags is exclusive to authorized readers, enhancing security compared to easily duplicable traditional keys or access cards. Additionally, if an RFID tag is lost or stolen, it can be promptly deactivated, preventing any unauthorized access.

Low maintenance costs

RFID systems are robust and require less maintenance than traditional lock-and-key systems. Unlike physical locks, RFID readers do not wear out with use. RFID tags are durable and resistant to environmental conditions, limiting the need for frequent replacement. This leads to additional cost savings in the long run.

RFID access control systems provide a compelling combination of security, convenience, and scalability, making them an excellent choice for many organizations. Users can easily present their card or key fob to the reader, and the scalability allows for cost-effective expansion as companies grow. The unique signal emitted by RFID tags enhances security, surpassing the limitations of passwords and addressing issues seen in biometric systems. Despite some drawbacks, the overall benefits of RFID systems make them a superior choice for secure access management.

RFID Employee Tracking in the Manufacturing Environment

The first employee time clock was invented in 1888 by Willard Bundy, a jewelry shop owner in Auburn, New York. While employers were tracking hours and wages before this invention, of course, Bundy’s clock was the first to provide each worker with a unique key, offering a more streamlined and secure employee time-tracking system. Employee tracking using RFID builds on this simple concept to provide the transparency and security that both employers and employees demand today.

Benefits of RFID Employee Tracking

There are myriad benefits of RFID technology across various domains, including:

    • Enhanced security: RFID can manage access to restricted areas, machines, and tools, quickly granting authorized personnel access while preventing unauthorized persons from gaining entry.
    • Attendance and time tracking: Automated attendance reduces manual errors and streamlines payroll processes, a well-established and widely accepted practice among both employers and employees.
    • Asset management: RFID tags embedded in key assets allow for more accurate record-keeping and serve as a primary technology for enabling predictive maintenance. Asset management using RFID also ensures the precise location of tools, effectively preventing loss or theft.

Inspection verification using RFID

Completing routine machine and facility inspections diligently is critical to preventing catastrophic failures. Unfortunately, in the case of routine inspections, employees may submit inspection reports without physically inspecting the equipment. This is often due to the equipment being physically located a long walk away. To ensure inspections are completed every time, RFID tags installed at inspection locations allow the employees to scan physically upon finishing inspections. This allows for:

    • 100% verification that the employee was physically present at the inspection location
    • Accurate and automated data entry for time, date, and employee completing tasks
    • Auditable record of inspections

Best practices for implementing or expanding RFID employee tracking

Integrating RFID tracking brings forth a multitude of best practices for implementation and expansion, including:

    • Clear and transparent communication: RFID tracking offers significant benefits for both employees and employers. With a critical emphasis on employee training, making all the data visible to employees increases trust and adoption.
    • Regulation, compliance, and ethics: Most RFID systems will save minimal personal information; however, if you need to collect and record personal information, be sure to check with local laws and regulations and avoid recording unnecessary personal information.
    • Limited data collection: RFID can record lots of data. Recording only what is necessary and beneficial streamlines your system and prevents employees from becoming distrustful.

RFID technology has many benefits in managing employee access, attendance, asset tracking, and even employee location verification. When increasing employee monitoring there is always a delicate balance between improving operational efficiency and respecting employee privacy rights. By adopting a transparent communication program, complying with local regulations, and prioritizing limited data collection, organizations can harness the benefits of RFID employee tracking responsibly and ethically.

Transforming Big Data Into Practical Insights

While RFID technology has been around for almost 70 years, the last decade has seen widespread acceptance, particularly in automated manufacturing. It is now deployed for various common applications, including automatic data transfer in machining operations, quality control in production, logistics traceability, and inventory control.

RFID has contributed significantly to the evolution of data collection and handling. With this evolution has come vast amounts of data which can be crucial for process improvement, quality assurance, and regulatory compliance. Nevertheless, many organizations grapple with the challenge of transforming this abundance of data into actional insights.

Key industry terms such as Industry 4.0 and the Industrial Internet of Things (IIOT) were once perceived as distant concepts crafted by marketing teams, seemingly disconnected from the practicalities of the plant floor. However, these buzzwords emerged as a response to manufacturing organizations worldwide recognizing the imperative for enhanced visibility into their operations. While automation hardware and supporting infrastructure have swiftly progressed in response to this demand, there remains a significant need for software that can effectively transform raw data into actionable data. This software must offer interactive feedback through reporting, dashboards, and real-time indicators.

Meeting the demand will bring vendors from various industries and start-ups, with a few established players in automation rising to the occasion. Competition serves as a motivator, but the crucial factor in bridging the software gap on the plant floor lies in partnering with a vendor attuned to the specific needs of that environment. The question then becomes: How do you discern the contenders from the pretenders? The following is a checklist to help.

Does the potential vendor have:

    • A solid understanding that downtime and scrap must be reduced or eliminated?
    • Core expertise in automation tailored for the plant floor?
    • Smart hardware devices such as RFID and condition monitoring sensors?
    • A comprehensive system solution capable of collecting, analyzing, and transporting data from the device to the cloud?
    • A user-friendly interface that allows interaction with mobile devices like tablets and phones?
    • The ability to generate customized reports tailored to your organizations requirements?
    • A stellar industry reputation for quality and reliability?
    • A support chain covering pre-sales, installation, and post-sales support?
    • Demonstrated instances of successful system deployments?
    • A willingness to develop or adapt existing devices to address your specific needs?

If you can tick all of these, its a safe bet you are in good hands. Otherwise, you’re taking a chance.

Key Considerations for Choosing the Right RFID Tag for Your Traceability Application

Choosing an RFID tag for your traceability application can be difficult given the huge variation of tags available today. Here are four main factors to keep in mind when selecting a tag, which will greatly contribute to the success of your RFID project.  

 

Choose tag type: I like to start with tags and work backward. Tags come in many shapes and sizes – from paper labels to hang tags, pucks, and even glass capsules and reusable data bolts. First, think about where you want to mount your tag. It is important that it does not interfere with your current product or production process. If you plan to tag a metal product, using a metal-mount style tag will give you the best results.

Assess the required read range: Think about how much range you need between your RFID readers and your tags. Remember that the shorter your range, the more options you will have when selecting a suitable frequency. While all frequencies work for short ranges, long ranges require HF (High Frequency) or even UHF (Ultra High Frequency) products. As a rule of thumb, it is best to keep your reading range as short as possible for the most reliable results.

 

Consider the environment: RFID tags are designed to withstand high temperatures, chemicals, water, and moisture. If your environment involves any of these conditions, you will want a tag that is up to the challenge and will remain functional.

 

Choose the data storage option: RFID tags can be read only or read/write, so think about what kind of data you want to store on your tags. Do you want your tag to be a simple license plate tied back to a centralized database, or do you want to store process/status data directly on the tag? RFID gives you a choice and now is the time to think about what and how much data you want to maximize the benefit of RFID for your process.

 

So now that you have thought about tag type, read range, environment, and data, you already have a promising idea of which tags will work in your application. The final step is to get price quotes and get started with your project. This is a wonderful time to ask the RFID experts for more recommendations and ask about on-site testing to make sure your tags are a great fit for your application. It is also an excellent time to collect recommendations for which reader will pair best with your tag and application.

Considerations When Picking UHF RFID

If you’ve attempted to implement an ultra-high frequency (UHF) RFID system into your facility, you might have run into some headaches in the process of getting things to work properly. If you are looking to implement UHF RFID, but haven’t had the chance to set things up yet, then this blog might be beneficial to keep in mind during the process.

UHF RFID and what it can do

UHF RFID is a long-range system with a focus on gaining visibility in the supply chain or manufacturing process. It can track multiple ID tags in a set area/distance (depending on the read/write head you select). The RFID field is emitted by an antenna that propagates an electromagnetic field, which will “ping and power up” a tag with data saved on it. Commonly, warehouses use it for logistics, supply chain tracking, warehouse pallet tracking, equipment tracking, or even for luggage tracking. As amazing as this technology sounds, there are environmental factors that can cause the system to not work to its full potential.

Factors affecting RFID system performance

Different materials or environments can affect the performance of your RFID system. Each tag antenna is set to a specific frequency, and some materials or environments can influence the radiation pattern. This can be something as simple as the material on which the tag is mounted to something more complex, such as how the signal is going to bounce off the walls or the ground. Below are some common issues people run into when implementing RFID.

    • Absorption: Absorption occurs when an object in the field absorbs part of the radio frequency energy emitted from the reader antenna. Cardboard, conductive liquids, and tissue (human bodies or animals) are examples of materials that can absorb some of the RF energy. One way to think of this is to imagine a sound booth in a recording studio. The booth is covered in foam to absorb sound. This is a similar philosophy for UHF RFID. You need to consider materials that absorb that energy.
    • Reflection: When there are distortions of the RF field, reflection can occur. As you may imagine, certain materials, such as metals, can cause the waves emitted from the antenna to distort or “reflect” in ways that cause performance losses. This could be metal machinery or fixings between the reader and the tags, a group of metal pipes, and mounting on metal containers. If you choose to do a deeper dive, there are other performance factors that can be impacted by the path of the signal, such as zones in which the tag can’t be reached (even if the tag is in the reader’s field), or the tag and the reader are not aligned properly.
    • Detuning: Detuning occurs when the radio frequency between the tag and reader is changed in the process. Since you pair specific readers to specific tags at a specific frequency, you don’t want your environment to cause a change in the specific frequencies. Certain materials, such as cardboard, metals, tissue, and plastics, can cause an impedance that can “un-match” your reader and tags based on the RF not matching up.

Luckily for you, many companies who specialize in RFID can help ensure you pick the right system for your application. Some will even go visit your site to evaluate the environment and materials that will be involved in the process and recommend the right readers, antennas, tags, and accessories for you.

Although not all UHF RFID applications seem complex, there are many small things that can affect the entire operation. When you are picking your system, make sure you keep in mind some of these effects, and if you are unsure, call in a professional for some assistance.

Automation Insights: Top Blogs From 2022

It’s an understatement to say 2022 had its challenges. But looking back at the supply chain disruptions, inflation, and other trials threatening success in many industries, including manufacturing, there were practical insights we can benefit from as we dive into 2023. Below are the most popular blogs from last year’s Automation Insights site.

    1. Evolution of Pneumatic Cylinder Sensors

Top 2022 Automation Insights BlogsToday’s pneumatic cylinders are compact, reliable, and cost-effective prime movers for automated equipment. They’re used in many industrial applications, such as machinery, material handling, assembly, robotics, and medical. One challenge facing OEMs, integrators, and end users is how to detect reliably whether the cylinder is fully extended, retracted, or positioned somewhere in between before allowing machine movement.

Read more.

    1. Series: Condition Monitoring & Predictive Maintenance 

Top 2022 Automation Insights BlogsBy analyzing which symptoms of failure are likely to appear in the predictive domain for a given piece of equipment, you can determine which failure indicators to prioritize in your own condition monitoring and predictive maintenance discussions.

Read the series, including the following blogs:

    1. Know Your RFID Frequency Basics

Top 2022 Automation Insights BlogsIn 2008 I purchased my first toll road RFID transponder, letting me drive through and pay my toll without stopping at a booth. This was my first real-life exposure to RFID, and it was magical. Back then, all I knew was that RFID stood for “radio frequency identification” and that it exchanged data between a transmitter and receiver using radio waves. That’s enough for a highway driver, but you’ll need more information to use RFID in an industrial automation setting. So here are some basics on what makes up an RFID system and the uses of different radio frequencies.

Read more.

    1. IO-Link Event Data: How Sensors Tell You How They’re Doing

Top 2022 Automation Insights BlogsI have been working with IO-Link for more than 10 years, so I’ve heard lots of questions about how it works. One line of questions I hear from customers is about the operating condition of sensors. “I wish I knew when the IO-Link device loses output power,” or, “I wish my IO-Link photoelectric sensor would let me know when the lens is dirty.” The good news is that it does give you this information by sending Event Data. That’s a type of data that is usually not a focus of users, although it is available in JSON format from the REST API.

Read more.

    1. Converting Analog Signals to Digital for Improved Performance

Top 2022 Automation Insights BlogsWe live in an analog world, where we experience temperatures, pressures, sounds, colors, etc., in seemingly infinite values. There are infinite temperature values between 70-71 degrees, for example, and an infinite number of pressure values between 50-51 psi.

Read more.

We appreciate your dedication to Automation Insights in 2022 and look forward to growth and innovation in 2023.

IO-Link Changeover: ID Without RFID – Hub ID

When looking at flexible manufacturing, what first comes to mind are the challenges of handling product changeovers. It is more and more common for manufacturers to produce multiple products on the same production line, as well as to perform multiple operations in the same space.

Accomplishing this and making these machines more flexible requires changing machine parts to allow for different stages in the production cycle. These interchangeable parts are all throughout a plant: die changes, tooling changes, fixture changes, end-of-arm tooling, and more.

When swapping out these interchangeable parts it is crucial you can identify what tooling is in place and ensure that it is correct.

ID without RFID

When it comes to identifying assets in manufacturing today, typically the first option companies consider is Radio-Frequency Identification (RFID). Understandably so, as this is a great solution, especially when tooling does not need an electrical connection. It also allows additional information beyond just identification to be read and written on the tag on the asset.

It is more and more common in changeover applications for tooling, fixtures, dies, or end-of-arm tooling to require some sort of electrical connection for power, communication, I/O, etc. If this is the case, using RFID may be redundant, depending on the overall application. Let’s consider identifying these changeable parts without incurring additional costs such as RFID or barcode readers.

Hub ID with IO-Link

In changeover applications that use IO-Link, the most common devices used on the physical tooling are IO-Link hubs. IO-Link system architectures are very customizable, allowing great flexibility to different varieties of tooling when changeover is needed. Using a single IO-Link port on an IO-Link master block, a standard prox cable, and hub(s), there is the capability of up to: 

    • 30 Digital Inputs/Outputs or
    • 14 Digital Inputs/Outputs and Valve Manifold Control or
    • 8 Digital Inputs/Outputs and 4 Analog Voltage/Current Signals or
    • 8 Analog Input Signals (Voltage/Current, Pt Sensor, and Thermocouple)

When using a setup like this, an IO-Link 1.1 hub (or any IO-Link 1.1 device) can store unique identification data. This is done via the Serial Number Parameter and/or Application Specific Tag Parameter. They act as a 16- or 32-byte memory location for customizable alphanumeric information. This allows for tooling to have any name stored within that memory location. For example, Fixture 44, Die 12, Tool 78, EOAT 123, etc. Once there is a connection, the controller can request the identification data from the tool to ensure it is using the correct tool for the upcoming process.

By using IO-Link, there are a plethora of options for changeover tooling design, regardless of various I/O requirements. Also, you can identify your tooling without adding RFID or any other redundant hardware. Even so, in the growing world of Industry 4.0 and the Industrial Internet of Things, is this enough information to be getting from your tooling?

In addition to the diagnostics and parameter setting benefits of IO-Link, there are now hub options with condition monitoring capabilities. These allow for even more information from your tooling and fixtures like:

    • Vibration detection
    • Internal temperature monitoring
    • Voltage and current monitoring
    • Operating hours counter

Flexible manufacturing is no doubt a challenge and there are many more things to consider for die, tooling and fixture changes, and end-of-arm tooling outside of just ID. Thankfully, there are many solutions within the IO-Link toolbox.

For your next changeover, I recommend checking out Non-Contact Inductive Couplers Provide Wiring Advantages, Added Flexibility and Cost Savings Over Industrial Multi-Pin Connectors for a great solution for non-contact connectivity that can work directly with Hub ID.

Inductive Sensors and Their Unlimited Uses in Automation

Inductive sensors (also known as proximity sensors or proxes) are the most commonly used sensors in mechanical engineering and industrial automation. When they were invented in the 1960s, they marked a milestone in the development of control systems. In a nutshell, they generate an electromagnetic field that reacts to metal targets that approach the sensor head. They even work in harsh environments and can solve versatile applications.

There are hardly any industrial machines that work without inductive sensors. So, what can be solved with one, two, three, or more of them?

What can you do with one inductive sensor?

Inductive sensors are often used to detect an end position. This could be in a machine for end-of-travel detection, but also in a hydraulic cylinder or a linear direct drive as an end-of-stroke sensor. In machine control, they detect many positions and trigger other events. Another application is speed monitoring with a tooth wheel.

What can you do with two inductive sensors?

By just adding one more sensor you can get the direction of rotational motion and take the place of a more expensive encoder. In a case where you have a start and end position, this can also be solved with a second inductive sensor.

What can you do with three inductive sensors?

In case of the tooth wheel application, the third sensor can provide a reference signal and the solution turns into a multiturn rotary encoder.

What can I do with four inductive sensors and more?

For multi-point positioning, it may make sense to switch to a measurement solution, which can also be inductive. Beyond that, an array of inductive sensors can solve identification applications: In an array of 2 by 2 sensors, there are already 16 different unique combinations of holes in a hole plate. In an array of 3 by 3, it would be 512 combinations.