How IO-Link Sensors With Condition Monitoring Features Work With PLCs

As manufacturers continually look for ways to maximize productivity and eliminate waste, automation sensors are taking on a new role in the plant. Once, sensors were used only to provide detection or measurement data so the PLC could process it and run the machine. Today, sensors with IO-Link measure environmental conditions like temperature, humidity, ambient pressure, vibration, inclination, operating hours, and signal strength. By setting alarm thresholds, it’s possible to program the PLC to use the resulting condition monitoring data to keep machines running smoothly.

Real-time data for real-time response

A sensor with condition monitoring features allows a PLC to use real-time data with the same speed it uses a sensor’s primary process data. This typically requires setting an alarm threshold at the sensor and a response to those alarms at the PLC.

When a vibration threshold is set up on the sensor and vibration occurs, for example, the PLC can alert the machine operator to quickly check the area, or even stop the machine, to look for a product jam, incorrect part, or whatever may be causing the vibration. By reacting to the alarm immediately, workers can reduce product waste and scrap.

Inclination feedback can provide diagnostics in troubleshooting. Suppose a sensor gets bumped and no longer detects its target, for example. The inclination alarm set in the sensor will indicate after a certain degree of movement that the sensor will no longer detect the part. The inclination readout can also help realign the sensor to the correct position.

Detection of other environmental factors, including humidity and higher-than-normal internal temperatures, can also be set, providing feedback on issues such as the unwanted presence of water or the machine running hotter than normal. Knowing these things in real-time can stop the PLC from running, preventing the breakdown of other critical machine components, such as motors and gearboxes.

These alarm bits can come from the sensors individually or combined together inside the sensor. Simple logic, like OR and AND statements, can be set on the sensor in the case of vibration OR inclination OR temperature alarm OR humidity, output a discrete signal to pin 2 of the sensors. Then pin 2 can be fed back through the same sensor cable as a discrete alarm signal to the PLC. A single bit showing when an alarm occurs can alert the operator to look into the alarm condition before running the machine. Otherwise, a simple ladder rung can be added in the PLC to look at a single discrete alarm bit and put the machine into a safe mode if conditions require it.

In a way, the sensor monitors itself for environmental conditions and alerts the PLC when necessary. The PLC does not need to create extra logic to monitor the different variables.

Other critical data points, such as operating hours, boot cycle counters, and current and voltage consumption, can help establish a preventative and predictive maintenance schedule. These data sets are available internally on the sensors and can be read out to help develop maintenance schedules and cut down on surprise downtimes.

Beyond the immediate benefits of the data, it can be analyzed and trended over time to see the best use cases of each. Just as a PLC shouldn’t be monitoring each alarm condition individually, this data must not be gathered in the PLC, as there is typically only a limited amount of memory, and the job of the PLC is to control the machines.

This is where the IT world of high-level supervision of machines and processes comes into play. Part two of my blog will explore how to integrate this sensor data into the IT level for use alongside the PLC.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.

Does Your Stamping Department Need a Checkup? Try a Die-Protection Risk Assessment

If you have ever walked through a stamping department at a metal forming facility, you have heard the rhythmic sound of the press stamping out parts, thump, thump. The stamping department is the heart manufacturing facility, and the noise you hear is the heartbeat of the plant. If it stops, the whole plant comes to a halt. With increasing demands for higher production rates, less downtime, and reduction in bad parts, stamping departments are under ever-increasing pressure to optimize the press department through die protection and error-proofing programs.

The die-protection risk assessment team

The first step in implementing or optimizing a die protection program is to perform a die-protection risk assessment. This is much like risk assessments conducted for safety applications, except they are done for each die set. To do this, build a team of people from various positions in the press department like tool makers, operators, and set-up teams.

Once this team is formed, they can help identify any incidents that could occur during the stamping operations for each die set and determine the likelihood and the severity of possible harm. With this information, they can identify which events have a higher risk/severity and determine what additional measures they should implement to prevent these incidents. An audit is possible even if there are already some die protection sensors in place to determine if there are more that should be added and verify the ones in place are appropriate and effective.

The top 4 die processes to check

The majority of quality and die protection problems occur in one of these three areas: material feed, material progression, and part- and slug-out detections. It’s important to monitor these areas carefully with various sensor technologies.

Material feed

Material feed is perhaps the most critical area to monitor. You need to ensure the material is in the press, in the correct location, and feeding properly before cycling the press. The material could be feeding as a steel blank, or it could come off a roll of steel. Several errors can prevent the material from advancing to the next stage or out of the press: the feed can slip, the stock material feeding in can buckle, or scrap can fail to drop and block the strip from advancing, to name a few. Inductive proximity sensors, which detect iron-based metals at short distances, are commonly used to check material feeds.

Material progression

Material progression is the next area to monitor. When using a progressive die, you will want to monitor the stripper to make sure it is functioning and the material is moving through the die properly. With a transfer die, you want to make sure the sheet of material is nesting correctly before cycling the press. Inductive proximity sensors are the most common sensor used in these applications, as well.

Here is an example of using two inductive proximity sensors to determine if the part is feeding properly or if there is a short or long feed. In this application, both proximity sensors must detect the edge of the metal. If the alignment is off by just a few millimeters, one sensor won’t detect the metal. You can use this information to prevent the press from cycling to the next step.

Short feed, long feed, perfect alignment

Part-out detection

The third critical area that stamping departments typically monitor is part-out detection, which makes sure the finished part has come out of the stamping

area after the cycle is complete. Cycling the press and closing the tooling on a formed part that failed to eject can result in a number of undesirable events, like blowing out an entire die section or sending metal shards flying into the room. Optical sensors are typically used to check for part-out, though the type of photoelectric needed depends on the situation. If the part consistently comes out of the press at the same position every time, a through-beam photo-eye would be a good choice. If the part is falling at different angles and locations, you might choose a non-safety rated light grid.

Slug-ejection detection

The last event to monitor is slug ejection. A slug is a piece of scrap metal punched out of the material. For example, if you needed to punch some holes in metal, the slug would be the center part that is knocked out. You need to verify that the scrap has exited the press before the next cycle. Sometimes the scrap will stick together and fail to exit the die with each stroke. Failure to make sure the scrap material leaves the die could affect product quality or cause significant damage to the press, die, or both. Various sensor types can ensure proper scrap ejection and prevent crashes. The picture below shows a die with inductive ring sensors mounted in it to detect slugs as they fall out of the die.

Just like it is important to get regular checkups at the doctor, performing regular die-protection assessments can help you make continuous improvements that can increase production rates and reduce downtime. Material feed, material progression, part-out and slug-out detection are the first steps to optimize, but you can expand your assessments to include areas like auxiliary equipment. You can also consider smart factory solutions like intelligent sensors, condition monitoring, and diagnostics over networks to give you more data for preventative maintenance or more advanced error-proofing. The key to a successful program is to assemble the right team, start with the critical areas listed above, and learn about new technologies and concepts that are becoming available to help you plan ways to improve your stamping processes.

Identify Failures Before They Happen: The PF Curve

The P-F curve is often mentioned in condition monitoring and predictive maintenance discussions. “P-F” refers to the interval between the detection of a potential failure (P) and the occurrence of a functional failure (F).The P-F curve is an illustrative generalization of what happens to an asset, machine or component as it ages, degrades, and eventually fails. It shows the different stages of an asset’s life, how machine failures progress, and how and when different symptoms emerge which might signal impending (or actual) failure.

The time scale in Fig. 1 is obviously exaggerated, and most assets operate for a lengthy period of time before failure starts to occur. The steepness of the failure portion of the curve can vary from asset to asset, but it generally follows the same pattern as shown in the diagram.

At first, performance degradation is minor and may not require significant action. As time progresses, the potential failure indicators become stronger and more easily detectable and the performance degradation becomes more severe, eventually ending in catastrophic failure.

The timeline is split into three domains:

      • Proactive domain – the failure is relatively far off (machine may still be new). Proactive activities include designing for reliability, precision installation & alignment and life cycle asset management. These can significantly extend the time until potential and functional failures occur.
      • Predictive domain – the failure may still be far off, but symptoms are emerging and offer (relatively) early warning signs. Timely action may be taken to prevent failure or replace failing equipment before catastrophic failure occurs.
      • Fault domain – the failure is occurring or inevitable, and symptoms indicate immediate action is needed to address the failure.

During these domains, different indicators/symptoms emerge. Ultrasonic, vibration and oil analysis often signal problems early; then temperature rise and noise emerge a bit later; and finally, parts come loose and more severe damage occurs. Depending on the asset, other indicators may be shown by activities including corrosion monitoring, motor current/power analysis and process parameter trending (e.g., flows, rates, pressures, temperatures, etc.).

By analyzing which symptoms of failure are likely to appear in the predictive domain for a given piece of equipment, you can determine which failure indicators to prioritize in your own condition monitoring and predictive maintenance discussions.

Click here to read more about condition monitoring.

3 Easy Options to Get Started With IIoT in 2022

The Industrial Internet of Things (IIoT) may seem large, intimidating, and challenging to implement; however, new systems and solutions will eliminate the perceived barriers for entry. As we wrap up the year and make plans for 2022, now is a great time to resolve to modernize your facility.

Do you have a process, system or machine that has outlived its life expectancy for many years or even decades and isn’t up to current IIoT standards? Great news: you have several options for updating.

Traditional approach

The traditional approach allows you to use your current controller to output your information to your existing database. If you want to try IIoT on your current setup and your controller cannot be modified, a self-contained system will allow for ultimate flexibility. It will provide you with access to the data based off an extra layer of sensing with a focus on condition monitoring. This approach is the least expensive route, however, if database access is restricted the following options may be better choices.

Cloud-based current industry standard

A second option is to use a portable monitoring system that has a condition monitoring sensor. It is essentially five sensors in one package that can hook up to a system using the cellular network to report data to a secure cloud database. This approach is useful in remote locations or where local network access is limited. If you have a problem area, you can apply this temporarily to collect enough data, enabling you to implement predictive maintenance.

Local-based current industry standard

A local self-contained system is a great solution if a cloud database is not desired or allowed. Systems such as a Condition Monitoring Toolkit allow for recording of devices onto the local memory or USB drive. Additionally, multiple alarm set points can be emailed or extracted locally. This approach is best for testing existing machines to help with predictive maintenance, to improve a process, or even to prevent a failure.

All three of these options require data management and analysis to improve your processor and to remedy problematic areas. Using any of them is an opportunity to test the IIoT waters before fully diving in. Extrapolating the results into problem-solving solutions can allow you to expand IIoT to the rest of your facilities in a cost-effective manner.

The Need for Data and System Interoperability in Smart Manufacturing

As technology advances at a faster pace and the world becomes flatter, manufacturing operations are generally focused on efficient production to maximize profitability for the organization. In the new era of industrial automation and smart manufacturing, organizations are turning to data generated on their plant floors to make sound decisions about production and process improvements.

Smart manufacturing improvements can be divided roughly into six different segments: Predictive Analytics, Track and Trace, Error Proofing, Predictive Maintenance, Ease of Troubleshooting, and Remote Monitoring.IOLink-SmartManufacturing_blog-01To implement any or all of these improvements requires interoperable systems that can communicate effectively and sensors and devices with the ability to provide the data required to achieve the manufacturer’s goals. For example, if the goal is to have error free change-overs between production cycles, then feedback systems that include identification of change parts, measurements for machine alignment changes, or even point of use indication for operators may be required.  Similarly, to implement predictive maintenance, systems require devices that provide alerts or information about their health or overall system health.

Traditional control system integration methods that rely heavily on discrete or analog (or both) modes of communication are limited to specific operations. For example, a 4-20mA measurement device would only communicate a signal between 4-20mA. When it goes beyond those limits there is a failure in communication, in the device or in the system. Identifying that failure requires manual intervention for debugging the problem and wastes precious time on the manufacturing floor.

The question then becomes, why not utilize only sensors and devices with networking ability such as a fieldbus node? This could solve the data and interoperability problems, but it isn’t an ideal solution:

  • Most fieldbuses do not integrate power and hence require devices to have separate power drops making the devices bulkier.
  • Multiple fieldbuses in the plant on different machines requires the devices to support multiple fieldbus/network protocols. This can be cost prohibitive, otherwise the manufacturer will need to stock all varieties of the same sensor.
  • Several of the commonly used fieldbuses have limitations on the number nodes you can add — in general 256 nodes is capacity for a subnet. Additional nodes requires new expensive switches and other hardware.

IOLink-SmartManufacturing_blog-02IO-Link provides one standard device level communication that is smart in nature and network independent, thus it enables interoperability throughout the controls pyramid making it the most suitable choice for smart manufacturing.

We will go over more specific details on why IO-Link is the best suited technology for smart manufacturing in next week’s blog.

 

Predictive Maintenance for Zen State of Manufacturing

Industry4.0In a previous entry, Mission Industry 4.0 @ Balluff, I explained that the two primary objectives for Balluff’s work in the area of Industry 4.0 are to help customers achieve high production efficiencies in their  automation and achieve  ‘batch size one’ production.

There are several levers that can be adjusted to achieve high levels of manufacturing efficiencies in the realm of IIoT (Industrial Internet of Things). These levers may include selecting quality of production equipment, lean production processes, connectivity and interoperability of devices, and so on. Production efficiency in the short term can be measured by how fast row materials can be processed into the final product – or how fast we deliver goods from the time the order comes in. The later portion depends more on the entire value-chain of the organization. Let’s focus today’s discussion on manufacturing – inside the plant itself.  The long-term definition of production efficiency in the context of manufacturing incorporates the effectiveness of the production system or the automation at hand. What that means is the long-term production efficiency involves the health of the system and its components in harmony with the other levers mentioned above.

The Zen state of manufacturing – nothing important will come up on Google for this as I made this phrase up. It is the perfect state of the entire manufacturing plant that continues production without hiccups all days, all shifts, every day. Does it mean zero-maintenance? Absolutely not, regular maintenance is necessary. It is one of those ‘non-value added but necessary’ steps in the lean philosophy.  Everyone knows the benefits of maintenance, so what’s new?

Well, all manufacturing facilities have a good, in some cases very strictly followed maintenance schedule, but these plants still face unplanned downtimes ranging from minutes to hours. Of course I don’t need to dwell on the cost associated with unplanned downtime. In most cases, there are minor reasons for the downtime such as a bad sensor connection, or cloudy lens on the vision sensor, etc. What if these components could alert you well in advance so that you could fix it before they go down? This is where Predictive Maintenance (PdM) comes in. In a nutshell, PdM uses actual equipment-performance data to determine the condition of the equipment so that the maintenance can be scheduled, based on the state of the equipment. This approach promises cost savings over “time-based” preventive maintenance.

PowerSuppliesIt is not about choosing predictive maintenance over preventive maintenance. I doubt you could achieve the Zen state with just one or the other. Preventive and predictive maintenance are both important – like diet and exercise. While preventive maintenance focuses on eliminating common scenarios that could have dramatic impact on the production for long time, predictive maintenance focuses on prolonging the life of the system by reducing costs associated with unnecessary maintenance.  For example, it is common practice in manufacturing plants to routinely change power supplies every 10 years, even though the rated life of a power supply under prescribed conditions is 15 years. That means as a preventive measure the plants are throwing away 30% life left on the power supply. In other words, they are throwing away 30% of the money they spent on purchasing these power supplies. If the power supplies can talk, they could probably save you that money indicating that “Hey, I still have 30% life left, I can go until next time you stop the machine for changing oil/grease in that robot!”

In summary, to achieve the zen state of manufacturing, it is important to understand the virtues of predictive maintenance and condition monitoring of your equipment. To learn more visit www.balluff.us.