How Industrial RFID Can Reduce Downtime in Your Stamping Department

The appliance industry is growing at record rates. The increase in consumer demand for new appliances is at an all-time high and is outpacing current supply. Appliance manufacturers are increasing production to catch up with this demand. This makes the costs associated with downtime even higher than normal. But using industrial RFID can allow you to reduce downtime in your stamping departments and keep production moving.

Most major household appliance manufacturers have large stamping departments as part of their manufacturing process. I like to think of the stamping department as the heart of the manufacturing plant. If you have ever been in a stamping department while they are stamping out metal parts, then you understand. The thumping and vibration of the press at work is what feeds the rest of the plant.  I was in a plant a few weeks ago meeting with an engineer in the final assembly area. It was oddly quiet in that area, so I asked what was going on. He said they’d sent everyone home early because one of their major press lines went down unexpectedly. Every department got sent home because they did not have the pieces and parts needed to make the final product. That is how critical the stamping departments are at these facilities.

In past years, this wasn’t as critical, because they had an inventory of parts and finished product. But the increase in demand over the last two years depleted that inventory. They need ways to modernize the press shop, including implementing smarter products like devices with Industry 4.0 capabilities to get real-time data on the equipment for things like analytics, OEE (Overall Equipment Effectiveness), preventative maintenance, downtime, and more error proofing applications.

Implementing Industrial RFID

One of the first solutions many appliance manufacturers implement in the press department is traceability using industrial RFID technology. Traceability is typically used to document and track different steps in a process chain to help reduce the costs associated with non-conformance issues. This information is critical when a company needs to provide information for proactive product recalls, regulatory compliance, and quality standards. In stamping departments, industrial RFID is often used for applications like asset tracking, machine access control, and die identification. Die ID is not only used to identify which die is present, but it can also be tied back to the main press control system to make sure the correct job is loaded.

need for RFID in appliance stamping
This shows an outdated manual method using papers that are easily lost or destroyed.
appliance stamping can be improved by RFID
This image shows an identification painted on a die, which can be easily destroyed.

Traditionally, most companies have a die number either painted on the die or they have a piece of paper with the job set up attached to the die. I cannot tell you how many times I have seen these pieces of paper on the floor. Press departments are pretty nasty environments, so these pieces of paper get messed up pretty quickly. And the dies take a beating, so painted numbers can easily get rubbed or scratched off.

Implementing RFID for die ID is a simple and affordable solution to this problem. First, you would attach an RFID tag with all of the information about the job to each die. You could also write maintenance information about the die to this tag, such as when the die was last worked on, who last worked on it, or process information like how many parts have been made on this die.
Next, you need to place an antenna. Most people mount the antenna to one of the columns of the press where the tag would pass in front of it as it is getting loaded into the die. The antenna would be tied back to a processor or IO-Link master if using IO-Link. The processor or IO-Link master would communicate with the main press control system. As the die is set in the press, the antenna reads the tag and tells the main control system which die is in place and what job to load.

In a stamping department you might find several large presses. Each press will have multiple dies that are associated with each press. Each die is set up to form a particular part. It is unique to the part it is forming and has its own job, or recipe, programmed in the main press control system. Many major stamping departments still use manual operator entry for set up and to identify which tools are in the press. But operators are human, so it is very easy to punch in the wrong number, which is why RFID is a good, automated solution.

In conclusion

When I talk with people in stamping departments, they tell me one of the main reasons a crash occurs is because information was entered incorrectly by the operator during set up. Crashes can be expensive to repair because of the damage to the tooling or press, but also because of the downtime associated. Establishing a good die setup process is critical to a stamping department’s success and implementing RFID can eliminate many of these issues.

Why In-Die sensing is a must

Metalforming suppliers are facing unprecedented challenges in today’s marketplace. As capital becomes scarce, and competition for business increases, the impact of a die crash or production run of bad parts could make the difference in whether they survive. Companies must protect their most critical assets, the presses and dies. Presses, dies, and various press room automation systems are the lifeblood of the supplier, and their costs can run into multiple millions of dollars in capital investment.

Sensor-driven error-proofing and die protection programs reduce downtime, ensure production is maximized, and prevent costly capital equipment repairs. Sensor implementation can prevent most die crashes and defective parts production if utilized correctly.

The vast majority of expensive press and die damage occurs due to failure to implement or the misapplication of sensing devices through a die protection program. There is a relatively inexpensive way for metal formers to protect their most critical assets in terms of dollar value and revenue creation. Stamping companies need to focus on two main areas to reduce costly repairs and production:

Feed-in and feed-through: You have to ensure the metal is in the press before the start of the cycle, and that it is feeding through properly. Once the cycle has completed, you must make sure the finished part is out of the stamping area. The type of stamping you do will determine the various points where you will need to incorporate sensors.

Part and slug ejection: During the stamping process, scrap material will be left that needs to be removed before the next cycle. Failure to ensure this will leave material inside the press, which can affect product quality or cause significant damage to the press, die, or both.

There are multiple additional processes within the press operation that can improve overall operational efficiency, but the two above should be the first steps toward implementing a successful program.

Multiple sensing devices can help you meet these requirements as well as a variety of suppliers and options you can choose from. It is essential that your personnel are trained on the various sensor technologies, and you are aligned with a supplier that understands the industry, your processes, and the variety of dies and materials you produce.

Many suppliers can provide you with sensing parts, but only a few are industry experts and can serve as both a consultant and parts supplier. You may need to invest a little more to get the expertise necessary to implement a sensing program upfront. Still, it will pay dividends for years to come if you focus upfront on the products that will reduce the downtime related to premature component failure or misapplication of sensor components.

Also, since most suppliers outsource the design and build of their dies, it is critical that your sensor solution partner is involved in new die design, with both your internal team as well as your die supplier. In addition, successful die protection programs entail rigid specifications for die sensing to help reduce their spare parts footprint and maximize the performance of their sensing devices.