Capacitive Prox Sensors Offer Versatility for Object and Level Detection

When you think of a proximity sensor, what is the first thing that comes to mind? In most cases it is probably the inductive proximity sensor and justly so because they are the most widely used sensor in automation today. But there are other types of proximity sensors. These include diffuse photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high frequency sound waves to detect objects. All of these sensors detect objects that are in close proximity of the sensor without making physical contact.

One of the most overlooked proximity sensors on the market today is the capacitive sensor. Why? For some, they have bad reputation from when they were released years ago as they were more susceptible to noise than most sensors. I have heard people say that they don’t discuss or use capacitive sensors because they had this bad experience in the past, however with the advancements of technology this is no longer the case.

Today capacitive sensors are available in as wide of a variety of housings and configurations as inductive sensors. They are available as small as 4mm in diameter, in hockey puck styles, extended temperature ranges, rectangular, square, with Teflon housings, remote sensing heads, adhesive cut-to-length for level detection and a hybrid technology that is capable of ignoring foaming and filming of liquids. The capability and diversity of this technology is constantly evolving.

Capacitive sensors are versatile in solving numerous 1applications. These sensors can be used to detect objects such as glass, wood, paper, plastic, ceramic, and the list goes on and on. The capacitive sensors used to detect objects are easily identified by the flush mounting or shielded face of the sensor. Shielding causes the electrostatic field to be short conical shaped much like the shielded version of the inductive proximity sensor. Typically, the sensing range for these sensors is up to 20 mm.

Just as there are non-flush or unshielded inductive sensors, there are non-flush capacitive sensors, and the mounting and housing2 looks the same. The non-flush capacitive sensors have a large spherical field which allows them to be used in level detection. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue and so forth and they can detect levels of solids like plastic granules, soap powder, sand and just about anything else. Levels can be detected either directly with the sensor touching the medium or indirectly where the sensor senses the medium through a non-metallic container wall. The sensing range for these sensors can be up to 30 mm or in the case of the hybrid technology it is dependent on the media.

The sensing distance of a capacitive sensor is determined by several factors including the sensing face area – the larger the better. The next factor is the material property of the object or dielectric constant, the higher the dielectric constant the greater the sensing distance. Lastly the size of the target affects the sensing range. Just like an inductive sensor you want the target to be equal to or larger than the sensor. The maximum sensing distance of a capacitive sensor is based on a metal target thus there is a reduction factor for non-metal targets.

As with most sensors today, the outputs of a capacitive sensor include PNP, NPN, push-pull, analog and the increasing popular IO-Link. IO-Link provides remote configuration, additional diagnostics and a window into what the sensor is “seeing”. This is invaluable when working on an application that is critical such as life sciences.

Most capacitive sensors have a potentiometer to allow adjustment of the sensitivity of the sensor to reliably detect the target. Today there are versions that have teach pushbuttons or a teach wire for remote configuration or even a remote amplifier. Although capacitive sensors can detect metal, inductive sensors should be used for these applications. Capacitive sensors are ideal for detecting non-metallic objects at close ranges, usually less than 30 mm and for detecting hidden or inaccessible materials or features.

Just remember, there is one more proximity sensor. Don’t overlook the capabilities of the capacitive sensor.

Are machine diagnostics overburdening our PLCs?

In today’s world, we depend on the PLC to be our eyes and ears on the health of our automation machines. We depend on them to know when there has been an equipment failure or when preventative maintenance is needed. To gain this level of diagnostics, the PLC must do more work, i.e. more rungs of code are needed to monitor the diagnostics supplied to the sensors, actuators, motors, drives, etc.

In terms of handling diagnostics on a machine, I see two philosophies. First, put the bare bones minimum in the PLC. With less PLC code, the scan times are faster, and the PLC runs more efficiently. But this version comes with the high probability for longer downtime when something goes wrong due to the lack of granular diagnostics. The second option is to add lots of diagnostic features, which means a lot of code, which can lessen downtime, but may throttle throughput, since the scan time of the PLC increases.

So how can you gain a higher level of diagnostics on the machine and lessen the burden on the PLC?

While we usually can’t have our cake and eat it too, with Industry 4.0 and IIoT concepts, you can have the best of both of these scenarios. There are many viewpoints of what these terms or ideas mean, but let’s just look at what these two ideas have made available to the market to lessen the burden on our PLCs.

Data Generating Devices Using IO-Link

The technology of IO-Link has created an explosion of data generating devices. The level of diversity of devices, from I/O, analog, temperature, pressure, flow, etc., provides more visibility to a machine than anything we have seen so far. Utilizing these devices on a machine can greatly increase visibility of the processes. Many IO-Link masters communicate over an Ethernet-based protocol, so the availability of the IO-Link device data via JSON, OPC UA, MQTT, UDP, TCP/IP, etc., provides the diagnostics on the Ethernet “wire” where more than just the PLC can access it.

Linux-Based Controllers

After using IO-Link to get the diagnostics on the Ethernet “wire,” we need to use some level of controller to collect it and analyze it. It isn’t unusual to hear that a Raspberry Pi is being used in industrial automation, but Linux-based “sandbox” controllers (with higher temperature, vibration, etc., standards than a Pi) are available today. These controllers can be loaded with Codesys, Python, Node-Red, etc., to provide a programming platform to utilize the diagnostics.

Visualization of Data

With IO-Link devices providing higher level diagnostic data and the Linux-based controllers collecting and analyzing the diagnostic data, how do you visualize it?  We usually see expensive HMIs on the plant floors to display the diagnostic health of a machine, but by utilizing the Linux-based controllers, we now can show the diagnostic data through a simple display. Most often the price is just the display, because some programming platforms have some level of visualization. For example, Node-Red has a dashboard view, which can be easily displayed on a simple monitor. If data is collected in a server, other visualization software, such as Grafana, can be used.

To conclude, let’s not overburden the PLC with diagnostic; lets utilize IIoT and Industry 4.0 philosophy to gain visibility of our industrial automation machines. IO-Link devices can provide the data, Linux-based controllers can collect and analyze the data, and simple displays can be used to visualize the data. By using this concept, we can greatly increase scan times in the PLC, while gaining a higher level of visibility to our machine’s process to gain more uptime.

Why Sensor & Cable Standardization is a Must for End-Users

Product standardization makes sense for companies that have many locations and utilize multiple suppliers of production equipment. Without setting standards for the components used on new capital equipment, companies incur higher purchasing, manufacturing, maintenance, and training costs.

Sensors and cables, in particular, need to be considered due to the following:

  • The large number of manufacturers of both sensors and cables
  • Product variations from each manufacturer

For example, inductive proximity sensors all perform the same basic function, but some are more appropriate to certain applications based on their specific features. Cables provide a similar scenario. Let’s look at some of the product features you need to consider.

Inductive Proximity Sensors Cables
 

·         Style – tubular or block style

·         Size and length

·         Electrical characteristics

·         Shielded or unshielded

·         Sensing Range

·         Housing material

·         Sensing Surface

 

·         Connector size

·         Length

·         Number of pins & conductors

·         Wire gage

·         Jacket material

·         Single or double ended

 

Without standards each equipment supplier may use their own preferred supplier, many times without considering the impact to the end customer. This can result in redundancy of sensor and cable spare parts inventory and potentially using items that are not best suited for the manufacturing environment. Over time this impacts operating efficiency and results in high inventory carrying costs.

Once the selection and purchasing of sensors and cables is standardized, the cost of inventory will coincide.  Overhead costs, such as purchasing, stocking, picking and invoicing, will go down as well. There is less overhead in procuring standard parts and materials that are more readily available, and inventory will be reduced. And, more standardization with the right material selection means lower manufacturing down-time.

In addition, companies can then look at their current inventory of cable and sensor spare parts and reduce that footprint by eliminating redundancy while upgrading the performance of their equipment. Done the right way, standardization simplifies supply chain management, can extend the mean time to failure, and reduce the mean time to repair.

Size Matters When Selecting Sensors for Semiconductor Equipment

As an industry account manager focusing on the semiconductor industry, I’ve come to realize that when it comes to sensors used in semiconductor production equipment, size definitely matters. A semiconductor manufacturing facility, better known as a fab or foundry, can cost thousands of dollars per square foot to construct, not to mention the cost to maintain the facility. Therefore, manufacturers of equipment used to produce semiconductors are under pressure to reduce the footprint of their machines. As the equipment becomes more compact, it becomes more difficult to incorporate optical sensors that are needed for precise object detection.

A self-contained optical sensor that includes the optics along with the required electronics is often much too large. There simply isn’t enough space for mounting in the area where the object is to be detected. An alternative method is to use a remote amplifier containing the electronics with a fiber optic cable leading to the point of detection where the light beam is focused on the target. However, there are some drawbacks to this method that can be difficult to overcome. There are instances where the fiber optic cable is too large and not flexible enough to be routed through the equipment. Also, a tighter beam pattern is often required in semiconductor equipment for precise positioning. To provide a tighter beam pattern with fiber optics, it is necessary to add additional lenses. These lenses increase the size, complexity and cost of the sensor.

1The most effective way to overcome the limitations of fiber optic sensors is to use very small sensor heads connected to a remote amplifier by electric cables, as opposed to fiber optic cables. The photoelectric sensor heads are exceptionally small, and because the cables are extremely flexible they can easily accommodate tight bends. Therefore, these micro-optic photoelectric sensors are particularly well suited for use in semiconductor equipment. The extremely small beam angles and sharply defined light spots are ideal for the precise positioning required for producing semiconductors. No supplementary lensing is required.

2An excellent example of how this micro-optic sensor technology is utilized in semiconductor equipment is for precision wafer detection needed for automated wafer handling. At the end of a robot arm used for wafer handling there is a very thin end-effector known as a blade. By utilizing a very tightly controlled and focused light spot, the sensor can detect wafers just a few μm thick with extreme precision.

3The combination of extremely small optical sensor heads with an external processor unit (amplifier) connected via highly flexible cables is a configuration that is ideal for use in semiconductor production equipment.

 

Sensor and Device Connectivity Solutions For Collaborative Robots

Sensors and peripheral devices are a critical part of any robot system, including collaborative applications. A wide variety of sensors and devices are used on and around robots along with actuation and signaling devices. Integrating these and connecting them to the robot control system and network can present challenges due to multiple/long cables, slip rings, many terminations, high costs to connect, inflexible configurations and difficult troubleshooting. But device level protocols, such as IO-Link, provide simpler, cost-effective and “open” ways to connect these sensors to the control system.

Just as the human body requires eyes, ears, skin, nose and tongue to sense the environment around it so that action can be taken, a collaborative robot needs sensors to complete its programmed tasks. We’ve discussed the four modes of collaborative operation in previous blogs, detailing how each mode has special safety/sensing needs, but they have common needs to detect work material, fixtures, gripper position, force, quality and other aspects of the manufacturing process. This is where sensors come in.

Typical collaborative robot sensors include inductive, photoelectric, capacitive, vision, magnetic, safety and other types of sensors. These sensors help the robot detect the position, orientation, type of objects, and it’s own position, and move accurately and safely within its surroundings. Other devices around a robot include valves, RFID readers/writers, indicator lights, actuators, power supplies and more.

The table, below, considers the four collaborative modes and the use of different types of sensors in these modes:

Table 1.JPG

But how can users easily and cost-effectively connect this many sensors and devices to the robot control system? One solution is IO-Link. In the past, robot users would run cables from each sensor to the control system, resulting in long cable runs, wiring difficulties (cutting, stripping, terminating, labeling) and challenges with troubleshooting. IO-Link solves these issues through simple point-to-point wiring using off-the-shelf cables.

Table 2.png

Collaborative (and traditional) robot users face many challenges when connecting sensors and peripheral devices to their control systems. IO-Link addresses many of these issues and can offer significant benefits:

  • Reduced wiring through a single field network connection to hubs
  • Simple connectivity using off-the-shelf cables with plug connectors
  • Compatible will all major industrial Ethernet-based protocols
  • Easy tool change with Inductive Couplers
  • Advanced data/diagnostics
  • Parametarization of field devices
  • Faster/simpler troubleshooting
  • Support for implementation of IIoT/Industry 4.0 solutions

IO-Link: an excellent solution for simple, easy, fast and cost-effective device connection to collaborative robots.

IO-Link reduces waste due to sensor failures

In the last two blogs we discussed about Lean operations and reducing waste as well as Selecting right sensors for the job and the environment that the sensor will be placed. Anytime a sensor fails and needs a replacement, it is a major cause of downtime or waste (in Lean philosophy). One of the key benefits of IO-Link technology is drastically reducing this unplanned downtime and replacing sensors with ease, especially when it comes to measurement sensors or complex smart sensors such as flow sensors, continuous position monitoring sensors, pressure sensors, laser sensors and so on.

When we think about analog measurement sensor replacement, there are multiple steps involved. First, finding the right sensor. Second, calibrating the sensor for the application and configuring its setpoints. And third, hope that the sensor is functioning correctly.

Most often, the calibration and setpoint configuration is a manual process and if the 5S processes are implemented properly, there is a good chance that the procedures are written down and accessible somewhere. The process itself may take some time to be carried out, which would hold up the production line causing undesired downtime. Often these mission critical sensors are in areas of the machine that are difficult to access, making replacing then, let alone configuring, a challenge.

IO-Link offers an inherent feature to solve this problem and eliminates the uncertainty that the sensor is functioning correctly. The very first benefit that comes with sensors enabled with IO-Link is that measurement or readings are in engineering units straight from the sensor including bar, psi, microns, mm, liters/min, and gallons/min. This eliminated the need for measurements to be scaled and adjusted in the programming to engineering units.

Secondly, IO-Link masters offer the ability to automatically reconfigure the sensors. Many manufacturers call this out as automatic device replacement (ADR) or parameter server functionality of the master. In a nutshell, when enabled on a specific port of the multi-port IO-Link master, the master port reads current configuration from the sensor and locks them in. From that time forward, any changes made directly on the sensor are automatically overwritten by these locked parameters. The locked parameters can be accessed and changed only through authorized users. When the time comes to replace the sensor, there is only one step that needs to happen: Find the replacement sensor of the same model and plug it in. That’s it!

1

When the new sensor is plugged-in, the IO-Link master automatically detects that the replacement sensor does not have the correct parameters and automatically updates them on the sensor. Since the readings are directly in the units desired, there is no magic of scaling to fiddle with.

2

It is also important to note, that in addition to the ADR feature, there may be parameters or settings on the sensors that alert you to possible near-future failure of the sensor. This lets you avoid unplanned downtime due to sensor failure. A good example would be a pressure sensor that sends an alert (event) message indicating that the ambient temperature is too high or a photo-eye alerting the re-emitted light value is down close to threshold – implying that either the lens is cloudy, or alignment is off.

To learn more about IO-Link check out our other blogs.

You have options when it comes to connecting your sensors

When it comes to connecting I/O in factory automation settings, there are many options one can choose to build an efficient and cost-effective system. This is one area where you can reduce costs while also boosting productivity.

Single Ended Cables and Hardwired I/O

It is common in the industry for single ended cables to be run from sensors to a controller input card in a centralized control cabinet. And while this method works, it can be costly for a number of reasons, including:

  • Flying leads on single ended cables are time consuming to prepare and wire
  • Wiring mistakes are often made leading to more time troubleshooting
  • I/O Cards for PLCs are expensive
  • Long cable runs to a centralized location add up quickly especially when dealing with analog devices which require expensive shielded cables
  • Lack of scalability and diagnostics

Double Ended Cables and Networked I/O

Using double ended cables along with network I/O blocks allows for a cost-effective solution to distribute I/O and increase up time. There are numerous benefits that come along with this sort of architecture. Some of these benefits are:

  • Reduced cabling — since I/O is distributed, only network cables need to be run back to the control cabinet reducing cost and cabinet size, and sensor cables are shortened since I/O blocks are machine mounted
  • Quicker build time since standard wiring is less labor intensive
  • Diagnostics allows for quicker trouble shooting, leading to lower maintenance costs and reduced downtime

IO-Link

Using IO-Link delivers all of the strengths of networked I/O as well as additional benefits:

  • I/O Hubs allow for scalability
  • Smart devices can be incorporated into your system
  • Parameterization capability
  • Increased diagnostics from intelligent devices
  • Reduced costs and downtime
  • Increased productivity

Inductive Coupling for non-contact connection

Many people are using inductive coupling technology to provide a non-contact connection for their devices. This method allows you to pass both power and signal across an air gap making it ideal for replacing slip rings or multi-pin connectors in many applications. This provides some great options for industry to gain benefits in these areas such as:

  • Reduced wear since there is no physical connection
  • Faster change over
  • Reduced downtime due to the elimination of damaged connector pins

For more information on connectivity and I/O architecture solutions please visit www.balluff.com.

Diversity in factory automation

This blog was originally posted on the Innovating Automation Blog.

Biodiversity is beneficial not only in biological ecosystems, but in industrial factory automation as well. Diversity helps to limit the effects of unpredictable events.

Typically, in factory automation a control unit collects data from sensors, analyzes this data and, according to its programmed instruction, triggers actuators to a defined operation. In most cases, a single-channel structure consisting of sensor, logic and output perfectly fulfills the application requirements. Yet in some cases two-channel structures are preferred to increase the reliability of the control concept.

Clamping control at machine tool spindles

spindle-position-control

To monitor clamping positions of tools in machine tool spindles, several options are possible: Sensors with binary output (e.g. PNP normally open) or sensors with continuous output (e.g. 0..10V or IO-Link) may be installed. The clamping process in many spindles is controlled with hydraulic actuators. This means the clamping force can be controlled by using pressure sensors which control the applied hydraulic pressure in the clamping cylinder.

The combined usage of both position and pressure sensors controls the clamping status in a better manner than using only one sensor principle. Typically, there are three clamping situations: 1) unclamped 2) clamped without object 3) clamped with object. In tooling spindles, the clamped position is usually achieved by using springs which force the mechanics to hold and clamp the object when no pressure is applied. A pneumatic or hydraulic actuator allows the worker to unclamp the object by providing force to overcome the spring load. Without hydraulic or pneumatic pressure, the clamped position should be detected by the position sensor. When enough pressure is being built up, after a short delay, the unclamped position should be achieved. Otherwise something must be wrong.

The advantage of diversity

By using two different sensor principles (in this case pressure sensing and position sensing) the risk of so-called common cause failures is reduced. The probability of concurrent effects of environmental impact on the different sensors is diminished, thereby increasing the detection rate of failures. The machine control can immediately react if the signals of pressure and position sensors do not match, simplifying monitoring of the clamping process.

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orients them correctly and then feeds them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

Imagine the Perfect Photoelectric Sensor

Photoelectric sensors have been around for a long time and have made huge advancements in technology since the 1970’s.  We have gone from incandescent bulbs to modulated LED’s in red light, infrared and laser outputs.  Today we have multiple sensing modes like through-beam, diffuse, background suppression, retroreflective, luminescence, distance measuring and the list goes on and on.  The outputs of the sensors have made leaps from relays to PNP, NPN, PNP/NPN, analog, push/pull, triac, to having timers and counters and now they can communicate on networks.

The ability of the sensor to communicate on a network such as IO-Link is now enabling sensors to be smarter and provide more and more information.  The information provided can tell us the health of the sensor, for example, whether it needs re-alignment to provide us better diagnostics information to make troubleshooting faster thus reducing downtimes.  In addition, we can now distribute I/O over longer distances and configure just the right amount of IO in the required space on the machine reducing installation time.

IO-Link networks enable quick error free replacement of sensors that have failed or have been damaged.  If a sensor fails, the network has the ability to download the operating parameters to the sensor without the need of a programming device.

With all of these advancements in sensor technology why do we still have different sensors for each sensing mode?  Why can’t we have one sensor with one part number that would be completely configurable?

BOS21M_Infographic_112917

Just think of the possibilities of a single part number that could be configured for any of the basic sensing modes of through-beam, retroreflective, background suppression and diffuse. To be able to go from 30 or more part numbers to one part would save OEM’s end users a tremendous amount of money in spares. To be able to change the sensing mode on the fly and download the required parameters for a changing process or format change.  Even the ability to teach the sensing switch points on the fly, change the hysteresis, have variable counter and time delays.  Just imagine the ability to get more advanced diagnostics like stress level (I would like that myself), lifetime, operating hours, LED power and so much more.

Obviously we could not have one sensor part number with all of the different light sources but to have a sensor with a light source that could be completely configurable would be phenomenal.  Just think of the applications.  Just think outside the box.  Just imagine the possibilities.  Let us know what your thoughts are.

To learn more about photoelectric sensors, visit www.balluff.com.