Choosing the Right Cables for Enhanced Industrial Automation

While it seems like every new trend in technology is doing away with cables, we are not yet living in a cableless working world. To get started, there are many different cabling types for use in general assembly applications. It’s important to use the right type of cable for your industrial automation application and meet any specific needs surrounding ingress protection. As I touch on this information, I’ll uncover some new ways to help you improve your assemblies and production safety and possibly, to prevent any future failures.

Common cables

Let’s start with the most common cables used in automation. Y-splitters, double-ended cordests, single-ended cordsets, and adapters are all among them and can be found in many different application environments. These cables connect PLCs, industrial networking blocks, machine vision technology, level detection sensors, traceability devices, condition monitoring solutions, and much more.

What makes each of these cables unique?

In factory automation, cable connectors come in various diameter sizes, with M12 (12mm), M8 (8mm), and 7/8” cable sizes being the most common. Also, considering the diversity in cable jackets and materials is important. Selecting the right jacket for each cable or cordset can greatly reduce the risk of field failures.

The most common cable jackets include:

    • PVC (polyvinyl chloride): This general-purpose cable is available for use in almost every industry. While affordable, it doesn’t give your cable much protection outside of high moisture resistance.
    • PUR (polyurethane): This cable offers advantages for different types of work environments. It offers good resistance from oil and ozone and is abrasion resistant, making it durable in high cable volume environments, as well as in chemical/oil plants. The only setback with this cable is its limited temperature range.
    • TPE (thermoplastic): Out of the four cables listed, TPE is the most diverse when it comes to resistance. In addition to being durable and flexible, it has an excellent temperature range and is resistant to sunlight, ultraviolet radiation, and ozone. These cables are mostly found in the automotive industry but can be useful in many more.
    • Silicone: Silicone cables are a great alternative if the other three options aren’t sufficient for your assembly. This cable specializes in its resistance to spark, slag, and corrosion. Silicone tubing can also be offered up to an IP69K rating, ensuring high protection. They are also commonly known for having a temperature tolerance, with a range extending up to 250 degrees Celsius. So how can you improve your automation by just changing your cables? If you’re seeing an automated weld cell failure in your assembly, it could be beneficial to look at a cable with a silicone or TPE jacket that is IP69K rated. Those harsh environments could tear through a normal PVC cable if you’re not careful.

Below is a chart that can help which cable to use in your next installation.

Cables will always play a big part in the automation process, so the next time you’re ordering a machine or sensor or doing a general inspection, make sure to choose the right cable type for your applications.

Cracking the Code: How to Choose the Best M12 Connector for Your Application

The new iPhone packs a pretty punch — better camera, bigger battery, more storage in a selection of pastels – but, uh oh, your old charger is incompatible.  The disappearance of the Lightning port makes all the previously purchased chargers – one in the kitchen, the car, the bedroom, the office – obsolete. And without the right cable, your iPhone becomes an expensive paperweight.

The need for proper cables isn’t limited to our phones, of course. In the ever-evolving world of automation, a multitude of new products emerge daily, each demanding the precise cable for optimal functionality. Even within standard cable sizes, the array of connector types designed for diverse applications can be overwhelming.

Selecting the right cable for your application involves careful consideration of size, length, number of connectors, pinout, and the sometimes-confusing cable codes. Cable codes signify a cable’s unique capabilities and intended uses. Different codes correspond to distinct specifications and electrical features.

There are a wide variety of cable codings used for different purposes. Let’s explore the five most common M12 cable codes and their respective applications:

  • A-coded connectors: The most prevalent connector style, these are the go-to choice for sensors, actuators, motors, and standard devices. A-coded connectors can feature a varying number of pins, ranging from two to twelve.
  • B-coded connectors: Predominantly employed in network cables for fieldbus connections, particularly within Profibus systems. B-coded connectors typically come with three to five pins.
  • C-coded connectors: Less common but valuable, these connectors find their niche with AC sensors and actuators. They offer an additional level of security with a dual keyway, ensuring they are not mistakenly used in place of another cable. C-coded connectors usually sport three to six pins.
  • D-coded connectors: The choice for network cables designed for Ethernet and ProfiNet systems, these connectors can transfer data up to 100 Mb. Typically, they provide three to five pins.
  • X-coded connectors: A more recent innovation in the world of cables, X-coded connectors are gaining popularity for their capacity to transfer large data volumes at high speeds, up to 1 Gb. These are particularly suitable for high-speed data transfer in industrial applications. Unlike other coded cables, X-coded cables consistently feature eight pins.

By understanding the distinctive attributes of each M12 cable code, you can ensure your automation system operates efficiently and effectively.

Standardizing Sensors and Cables for Improved End-User Experience

The concept of product standardization holds a crucial role in the realm of manufacturing, particularly for companies with numerous facilities and a wide array of equipment suppliers. The absence of well-defined standards for components integrated into new capital equipment can lead to escalated purchasing expenses, heightened manufacturing outlays, increased maintenance costs, and more demanding training requirements.

Sensors and cables must be considered for these reasons:

    • A multitude of manufacturers of both sensors and cables, which can lead to a myriad of choices.
    • Product variations from each manufacturer in terms of product specifications and features, which can complicate the selection process.

For example, inductive proximity sensors all share the fundamental function of detecting objects. But based on their specific features, some are more suitable for specific applications than others. The situation is mirrored in the realm of cables. Here we look at some of the product features to consider:

Inductive Proximity Sensors Cables
 

·    Style:  tubular or block

·    Size and length

·    Electrical characteristics

·    Shielded or unshielded

·    Sensing range

·    Housing material

·    Sensing Surface

·    Connector size

·    Length

·    Number of pins & conductors

·    Wire gage

·    Jacket material

·    Single or double ended

In the absence of standardized norms, each equipment supplier might opt for its favorite source, often overlooking the impact on the end user. This can lead to redundancies in inventories of sensor and cable spare parts and even the use of components that are not entirely suited for the manufacturing environment. The ripple effect of this situation over time can result in diminished operational efficiency and high inventory carrying costs.

Once the selection and purchasing of sensors and cables are standardized, the management of inventory costs will coincide. Overhead expenses related to purchasing, stocking, picking, and invoicing will also go down. The process becomes more efficient when standardized components and materials that are readily available are employed, resulting in reduced inventory levels. Moreover, standardization with the right material selection contributes to decreased manufacturing downtimes.

Also, this transition empowers companies to reassess their existing inventory of cable and sensor spare parts. Through the elimination of redundancy and the elevation of equipment performance, the physical footprint of spare parts inventory can be significantly diminished. Executed adeptly, the act of standardization not only simplifies supply chain management but also extends the mean time between failures while concurrently reducing the mean time taken for repairs.

Why Choose an IO-Link Ecosystem for Your Next Automation Project?

By now we’ve all heard of IO-Link, the device-level communication protocol that seems magical. Often referred to as the “USB of industrial automation,” IO-Link is a universal, open, and bi-directional communication technology that enables plug-and-play device replacement, dynamic device configuration, centralized device management, remote parameter setting, device level diagnostics, and uses existing sensor cabling as part of the IEC standard accepted worldwide.

But what makes IO-Link magical?

If the list above doesn’t convince you to consider using IO-Link on your next automation project, let me tell you more about the things that matter beyond its function as a communications protocol.

Even though these benefits are very nice, none of them mean anything if the devices connected to the network don’t provide meaningful, relevant, and accurate data for your application.

Evolution of the IO-Link

IO-Link devices, also known as “smart devices,” have evolved significantly over the years. At first, they were very simple and basic, providing data such as the status of your inputs and outputs and maybe giving you the ability to configure a few basic parameters, such as port assignment as an input or an output digitally over IO-Link. Next, came the addition of functions that would improve the diagnostics and troubleshooting of the device. Multi-functionality followed, where you have one device under one part number, and can configure it in multiple modes of operation.

Nothing, however, affected the development of smart devices as much as the introduction of IIoT (Industrial Internet of Things) and the demand for more real-time information about the status of your machine, production line, and production plant starting at a device level. This demand drove the development of smart devices with added features and benefits that are outside of their primary functions.

Condition monitoring

IO-Link supplies both sensor/actuator details and secure information
IO-Link supplies both sensor/actuator details and secure information

One of the most valuable added features, for example, is condition monitoring. Information such as vibration, humidity, pressure, voltage and current load, and inclination – in addition to device primary function data – is invaluable to determine the health of your machine, thus the health of your production line or plant.

IO-Link offers the flexibility to create a controls architecture independent of PLC manufacturer or higher-level communications protocols. It enables you to:

    • use existing low-cost sensor cabling
    • enhance your existing controls architecture by adding devices such as RFID readers, barcode and identification vision sensors, linear and pressure transducers, process sensors, discrete or analog I/O, HMI devices, pneumatic and electro-mechanical actuators, condition monitoring, etc.
    • dynamically change the device configuration, auto-configure devices upon startup, and plug-and-play replacement of devices
    • enable IIOT, predictive maintenance, machine learning, and artificial intelligence

There is no other device-level communications protocol that provides as many features and benefits and is cost-effective and robust enough for industrial automation applications as IO-Link.

How Lower-Priced Cables Can Cost More and Cause Downtime

Cable selection is an important step when it comes to creating a system to yield the most uptime. Sensors tell a machine when to start and stop or begin the next process. The time to replace and rewire the cable are costly, but small in comparison to the costs associated with the unplanned downtime a failed cable can cause. That is why it is so important to make sure you are selecting the right cable for the job.

There are three cable jacket materials that are the most commonly used: polyvinyl chloride (PVC), polyurethane (PUR), and thermoplastic elastomer (TPE). Each material has its own strengths and weaknesses, allowing them to work better in certain applications than others. When selecting cables, you must consider all factors and conditions such as the temperature rating, whether the cable will have contact with any chemicals, how much will the cable be moving, will it encounter weld spatter, vibrations, etc. Once you have this information you can start to look for what cable will work best for you.

Polyvinyl Chloride (PVC)
PVC is the most general cable jacket. It usually has the lowest price, it’s durable and offers a decent temperature range. This is the cable jacket you will see in most standard automation applications, but it isn’t built for harsher environment conditions. PVC does not perform well with weld spatter and can’t handle high heat; it also does not have the best chemical resistance compared to other cable material options.

Polyurethane (PUR)
The PUR jacket is a step up from PVC in most areas. It provides a higher abrasion resistance and better chemical resistance but has a lower temperature range. PUR jackets are mostly used in areas with lots of oils and chemicals or in a cable carrier due to its higher abrasion rating.

Thermoplastic Elastomer (TPE)
TPE jacketed cables deliver a higher temperature rating, are more flexible, offer great chemical resistance, and can resist weld spatter. These cables work in weld cells, high-heat applications, cable carriers, and much more. Because of the higher performance, TPE jacketed cables tend to have a higher price point than PVC and PUR but will last longer and can be used effectively in a variety of environments.

There are many other cable jacket options available that are more application specific than the three mentioned above. Cables with silicone or FEP jackets will have higher temperature ranges than even TPE and can more effectively resist weld spatter. Steel-jacketed cables provide great protection from abrasion and constant vehicle traffic or any falling objects that could cut through a standard jacket. There are also TPE-V cables that are made for the Food and Beverage industry that have all the necessary certifications and can undergo many washdown cycles.

A key to reducing downtime and MRO costs is selecting the right cable for the application. Choosing a lower-priced cable can costs your more in the long run. Using a PVC cable in a weld cell will cost you much more in replacements costs and downtime than would be spent on using a slightly more expensive silicone cable designed to last 4 times longer in that environment. Don’t be blinded by initial costs; instead, focus on the needs of your application and you will see the benefits.

Why Sensor & Cable Standardization is a Must for End-Users

Product standardization makes sense for companies that have many locations and utilize multiple suppliers of production equipment. Without setting standards for the components used on new capital equipment, companies incur higher purchasing, manufacturing, maintenance, and training costs.

Sensors and cables, in particular, need to be considered due to the following:

  • The large number of manufacturers of both sensors and cables
  • Product variations from each manufacturer

For example, inductive proximity sensors all perform the same basic function, but some are more appropriate to certain applications based on their specific features. Cables provide a similar scenario. Let’s look at some of the product features you need to consider.

Inductive Proximity Sensors Cables
 

·         Style – tubular or block style

·         Size and length

·         Electrical characteristics

·         Shielded or unshielded

·         Sensing Range

·         Housing material

·         Sensing Surface

 

·         Connector size

·         Length

·         Number of pins & conductors

·         Wire gage

·         Jacket material

·         Single or double ended

 

Without standards each equipment supplier may use their own preferred supplier, many times without considering the impact to the end customer. This can result in redundancy of sensor and cable spare parts inventory and potentially using items that are not best suited for the manufacturing environment. Over time this impacts operating efficiency and results in high inventory carrying costs.

Once the selection and purchasing of sensors and cables is standardized, the cost of inventory will coincide.  Overhead costs, such as purchasing, stocking, picking and invoicing, will go down as well. There is less overhead in procuring standard parts and materials that are more readily available, and inventory will be reduced. And, more standardization with the right material selection means lower manufacturing down-time.

In addition, companies can then look at their current inventory of cable and sensor spare parts and reduce that footprint by eliminating redundancy while upgrading the performance of their equipment. Done the right way, standardization simplifies supply chain management, can extend the mean time to failure, and reduce the mean time to repair.

Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!

 

 

What to Ask Before You Build an RFID System to Meet Your Traceability Needs

An industrial RFID system is a powerful solution for reliably and comprehensively documenting individual working steps in manufacturing environments. But an industrial RFID system that meets your application needs isn’t available off-the-shelf. To build the system you need, it is important to consider what problems you hope RFID will solve and what return on investments you hope to see.

RFID can deliver many benefits, including process visibility and providing data needed to better manage product quality. It can be used to improve safety, satisfaction and profit margins. It can even be used to help comply with regulatory standards or to manage product recalls. And RFID can be used in a wide range of applications from broad areas like supply management to inventory tracking to more specific applications. These improvements can improve time, cost or performance—though not typically all three.

It is essential to understand and document the goal and how improvements will be measured to in order to plan a RFID system (readers, antennas, tags, cables) to best meet those goals.

Other important questions to consider:

Will the system be centralized or de-centralized? Will the system be license plate only or contain process data on the tag?

How will the data on the tags be used?  Will the information be used to interface with a PLC, database or ERP? Will it be used to provide MES or logical functionality? Or to provide data to an HMI or web browser/cloud interface?

Will the system be required to comply with any international regulations or standards? If so, which ones: EPC Global, Class 1 Gen 2 (UHF only), ISO 15693, or 14443 (HF only)?

What environment does the system need to perform in? Will it be used indoor or outdoor? Will it be exposed to liquids (cleaning fluids, coolants, machine oils, caustics) or high or low temperatures?

Does the RFID system need to work with barcodes or any other human readable information?

What are the performance expectations for the components? What is the read/write range distance from head to tag? What is the station cycle timing? Is the tag metal-mounted? Does the tag need to be reused or be disposable? What communication bus is required?

With a clear set of objectives and goals, the mechanical and physical requirements discovered by answering the questions above, and guidance from an expert, a RFID system can be configured that meets your needs and delivers a strong return on investment.

Three Ways to Configure a Splitter and Harness the Power of Pin 2

Based on the increasing popularity of machine mounted I/O utilizing readily available IP67 components, it’s more important than ever to utilize every I/O point.  I/O density has increased over the years and the types of I/O have become more diversified, yet in many systems pin 2 is left unused by the end user.  Sensors tend to come in twos, for example, a pneumatic cylinder may require a sensor for the extended position and one for the retracted position.  Running each individual sensor back to the interface block utilizes pins 1,3 and 4 (for power, ground and signal) but wastes pin 2 on each port.

Figure 1
Fig. 1 Bad I/O configuration: neglecting pin 2 is inefficient and costly

Rather than using a separate port on the I/O block for each sensor, a splitter can collect the outputs of two sensors and deliver the input to a single port.  With a splitter, one sensor output goes to pin 4, the other goes to pin 2.

By putting two signals into one and utilizing both pins 2 and 4, the overall I/O point cost decreases.

There are multiple ways to configure a splitter to utilize pin 2. We will review three methods — good, better and best:

1. T-splitter on the I/O block:

Figure 3
Fig. 3 Good basic method for utilizing the additional I/O point, pin-2

A T-splitter is a good way to utilize pin 2.  However, the “T” covers the I/O module port eliminating the benefit of the high-value diagnostic LEDs on the block. Also, individual cables must run all the way from the block to the sensors at the installation point, creating clutter and cable bulk.  In addition, when Ts are used on a vertically mounted block, the extra cable bulk can weigh down the T-splitter and threaten its integrity.

2. V-type splitter on the I/O block:

Figure 4
Fig. 4 Better way of utilizing pin 2 while also allowing visibility of diagnostic LEDs

The use of a V-type configuration allows better visibility of the diagnostic LEDs and eliminates the need to purchase a separate part. However, individual cables must still be run from the block to the sensors, creating clutter and cable bulk.

3. Ytype configuration:

Figure 5
Fig. 5 Best way to utilize pin 2

In the Y-type splitter configuration, all aspects of usability are improved. One cable runs from the I/O block to the installation point. The split of pins 2 and 4 is done as close to the sensors as possible. This significantly cleans up cable clutter, provides a completely unrestricted view of the diagnostic LEDs and allows for easy installation of multiple connectors to the I/O block.

Maintain Machine Up-Time with Application-Specific Cables

Using high-durability cables in application environments with high temperatures, weld spatter, or washdown areas improves manufacturing machine up-time.

It is important to choose a cable that matches your specific application requirements.

Washdown Applications

When a food and beverage customer needs to wash down their equipment after a production shift, a standard cable is likely to become a point of failure. A washdown-specific cable with an IP68/IP69 rating is designed to withstand high-pressure cleaning. It’s special components, such as an internal O-ring and stainless-steel connection nut, keep water and cleaners from leaking.

Welding Applications

Welding environments require application-specific cables to deal with elevated temperatures, tight bend radiuses and weld spatter. Cables with a full silicone jacket prevent the build-up of debris, which can cause shorts and failures over time.

High Temperature cables

Applications with high temperatures require sensors that can operate reliably in their environment. The same goes for the cables. High temperature cables include added features such as a high temperature jacket and insulation materials specifically designed to perform in these applications.

Cables

Selecting the correct cable for a specific application area is not difficult when you know the requirements the application environment demands and incorporate those demands into your choice. It’s no different than selecting the best sensor for the job. The phrase to remember is “application specificity.”

For more information on standard and high-durability cables, please visit www.balluff.com.