Looking Into & Through Transparent Material With Photoelectric Sensors

Advance automated manufacturing relies on sensor equipment to ensure each step of the process is done correctly, reliably, and effectively. For many standard applications, inductive, capacitive, or basic photoelectric sensors can do a fine job of monitoring and maintaining the automated manufacturing process. However, when transparent materials are the target, you need a different type of sensor, and maybe even need to think differently about how you will use it.

What are transparent materials?

When I think of transparent materials, water, glass, plexiglass, polymers, soaps, cooling agents, and packaging all come to mind. Because transparent material absorbs very little of the emitted red LED light, standard photoelectric sensors struggle on this type of application. If light can make its way back to the receiver, how can you tell if the beam was broken or not? By measuring the amount of light returned, instead of just if it is there or not, we can detect a transparent material and learn how transparent it is.

Imagine being able to determine proper mixes or thicknesses of liquid based on a transparency scale associated to a value of returned light. Another application that I believe a transparent material photoelectric senor would be ideal for is the thickness of a clear bottle. Imagine the wall thickness being crucial to the integrity of the bottle. Again, we would measure the amount of light allowed back to the receiver instead of an expensive measurement laser or even worse, a time-draining manual caliper.

Transparent material sensor vs. standard photoelectric sensor

So how does a transparent material sensor differ from a standard photoelectric sensor? Usually, the type of light is key. UV light is absorbed much greater than other wavelengths, like red or blue LEDs you find in standard photoelectric sensors. To add another level, you polarize that UV light to better control the light back into the receiver. Polarized UV light with a polarized reflector is the best combination. This can be done on a large or micro scale based on the sensor head size and build.

Uses for transparent material sensor include packaging trays, level tubes, medical tests, adhesive extrusion, and bottle fill levels, just to name a few. Transparent materials are everywhere, and the technology has matured. Make sure you are looking into specialized sensor technologies and working through best set-up practices to ensure reliable detection of transparent materials.

How IO-Link Sensors With Condition Monitoring Features Work With PLCs

As manufacturers continually look for ways to maximize productivity and eliminate waste, automation sensors are taking on a new role in the plant. Once, sensors were used only to provide detection or measurement data so the PLC could process it and run the machine. Today, sensors with IO-Link measure environmental conditions like temperature, humidity, ambient pressure, vibration, inclination, operating hours, and signal strength. By setting alarm thresholds, it’s possible to program the PLC to use the resulting condition monitoring data to keep machines running smoothly.

Real-time data for real-time response

A sensor with condition monitoring features allows a PLC to use real-time data with the same speed it uses a sensor’s primary process data. This typically requires setting an alarm threshold at the sensor and a response to those alarms at the PLC.

When a vibration threshold is set up on the sensor and vibration occurs, for example, the PLC can alert the machine operator to quickly check the area, or even stop the machine, to look for a product jam, incorrect part, or whatever may be causing the vibration. By reacting to the alarm immediately, workers can reduce product waste and scrap.

Inclination feedback can provide diagnostics in troubleshooting. Suppose a sensor gets bumped and no longer detects its target, for example. The inclination alarm set in the sensor will indicate after a certain degree of movement that the sensor will no longer detect the part. The inclination readout can also help realign the sensor to the correct position.

Detection of other environmental factors, including humidity and higher-than-normal internal temperatures, can also be set, providing feedback on issues such as the unwanted presence of water or the machine running hotter than normal. Knowing these things in real-time can stop the PLC from running, preventing the breakdown of other critical machine components, such as motors and gearboxes.

These alarm bits can come from the sensors individually or combined together inside the sensor. Simple logic, like OR and AND statements, can be set on the sensor in the case of vibration OR inclination OR temperature alarm OR humidity, output a discrete signal to pin 2 of the sensors. Then pin 2 can be fed back through the same sensor cable as a discrete alarm signal to the PLC. A single bit showing when an alarm occurs can alert the operator to look into the alarm condition before running the machine. Otherwise, a simple ladder rung can be added in the PLC to look at a single discrete alarm bit and put the machine into a safe mode if conditions require it.

In a way, the sensor monitors itself for environmental conditions and alerts the PLC when necessary. The PLC does not need to create extra logic to monitor the different variables.

Other critical data points, such as operating hours, boot cycle counters, and current and voltage consumption, can help establish a preventative and predictive maintenance schedule. These data sets are available internally on the sensors and can be read out to help develop maintenance schedules and cut down on surprise downtimes.

Beyond the immediate benefits of the data, it can be analyzed and trended over time to see the best use cases of each. Just as a PLC shouldn’t be monitoring each alarm condition individually, this data must not be gathered in the PLC, as there is typically only a limited amount of memory, and the job of the PLC is to control the machines.

This is where the IT world of high-level supervision of machines and processes comes into play. Part two of my blog will explore how to integrate this sensor data into the IT level for use alongside the PLC.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.

Tire Industry Automation: When a Photo-Eye Is Failing, Try an Ultrasonic Sensor

Should you use a photo-eye or an ultrasonic sensor for your automation application? This is a great question for tire industry manufacturing.

I was recently at a tire manufacturing plant when a maintenance technician asked me to suggest a photoelectric sensor for a large upgrade project he had coming up. I asked him about the application, project, and what other sensors he was considering.

His reply was a little startling. He said he had always used photo-eyes, but he couldn’t find a dependable one, so he would continually try different brands. My experience in this industry, along with good sensor training and advice from my colleague Jack Moermond, Balluff Sensor Products Manager, immediately made me think that photo-eye sensors were not the right choice for this application.

As I asked more questions, the problem became clear. The tire material the technician was detecting was black and dull. This type of material absorbs light and does not reflect it reliably back to the sensor. Also, environmental factors, such as dust and residue, can diminish a photo-eye’s signal quality.

Ultrasonic sensors for non-reflective materials and harsh environments

The technician didn’t have much experience with ultrasonic sensors, so I went on to explain why these may be a better solution for his application.

While photoelectric sensors send light beams to detect the presence of or measure the distance to an object, ultrasonics bounce sound waves off a target. This means that ultrasonics can be used in applications where an object’s reflectivity isn’t predictable, like with liquids, clear glass or plastic, or other materials. Dust build up on the face of an ultrasonic sensor does not give a false output. Ultrasonic sensors actually have a dead zone a few millimeters from the face where they won’t detect an object until the wave clears the dead zone, so take this into consideration when planning where to install an ultrasonic sensor.

Tire detection for process reliability with BUS ultrasonic sensors

Tire industry applications

The following are some popular tire industry applications where it might be better to choose an ultrasonic sensor over a photo-eye sensor.

    • The tire building process requires a lot of winding and unwinding of material to build the different layers of a tire. As this material is fed through the machines it starts to sag and loop. An ultrasonic sensor in this location will monitor how much sag and loop is in the process.
    • When tires are being loaded into curing presses, the press needs to confirm that the correct size tire is in place. An ultrasonic sensor can measure the height or width of the tire from the sides or top for confirmation.
    • Ultrasonic sensors are great at detecting if a tire or material is in place before a process starts.
    • Hydraulic systems are common in tire manufacturing. Ultrasonic sensors are good for hydraulic fluid level monitoring. Tying them to a SmartLight offers a visual reference and alarm output if needed.
    • Everyone knows the term “wig-wag” in tire mixing and extrusion. The sheets of wig-wag require monitoring as they are fed through the process. When this material gets close to being used up, a new wig-wag must be used.
Wig-wag stacks

So, when there is an application for a photo-eye, especially in a tire manufacturing plant, keep in mind that, rather than a photoelectric sensor, an ultrasonic may be a better option.

The maintenance technician I spoke with is now looking at different options of ultrasonics to use. He said I gave him something new to think about for his machines and opened the door for adding this technology to his plant.

Happy hunting!

Why Use Ultrasonic Sensors?

by Nick Smith

When choosing what sensor to use in different applications, it is important to first look at how they operate. Capacitive sensors generate an electrical field that can detect various liquids or other materials, such as glass, wood, paper, ceramic, and more at a close. Photoelectric sensors emit a light beam that is either received by a light sensor or bounced back to the emitter to detect an object’s presence or measure the distance to an object. Ultrasonic sensors bounce a sound wave off objects to detect them, which can make them a good solution for a surprising variety of uses.

How ultrasonic sensors operate

Ultrasonic sensors operate by emitting an ultra-high frequency sound wave that ranges from 300 MHz to 3 GHz, which is well above the 15-17 kHz range that humans can hear that bounces off the target object. The sensor measures the amount of time that sound wave takes to return to calculate the distance to the object. Ultrasonic sensors send these sound waves in a wider beam than a photoelectric uses, so they can more easily detect objects in a dusty or dirty environment. And with a greater sensing distance than capacitive sensors, they can be installed at a safe distance and still function effectively

Common applications for ultrasonic sensors

These capabilities together make ultrasonic sensors a great choice for tasks like detecting fill level, stack height and object presence. Sound waves are unaffected by the color, transparency, or consistency of an object or liquid, which makes it an obvious contender in the packaging, food, and beverage industry and many other industries with similar manufacturing processes.

So to monitor glass bottles as they travel on a conveyor, an ultrasonic sensor could be a good choice. These sensors will consistently work well detecting clear or reflective materials such as water, paint, glass, etc., which can cause difficulties for photoelectric sensors. Another benefit of these sensors is the ability to mount them further away from their targets. For example, there are ultrasonics that can be mounted between 20 to 8000 mm away from the object. After tuning your setup, you can detect very small objects as easily as larger, more visible items.

Another common application for ultrasonic sensors is monitoring boxes. Properly implemented ultrasonic sensors can detect different sizes of boxes as they travel on a conveyor belt by constantly emitting and receiving sound waves. This means that each box or object will be measured by the sound wave. Different photoelectric and capacitive sensors may fail to detect the full presence of an object and may only be able to detect a specific point on an object.

When it comes to all types of different fill-level applications, there are many ways a sensor can monitor various liquids and solids. The width of an ultrasonic beam can be increased to detect a wider area of solid material in a hopper or decreased to give a precise measurement on liquid levels. This ability to detect a smaller or larger surface area gives the user more utility when deciding how to meet the requirements of an application. Although capacitive sensors can detect fill levels very precisely as well, factors like beam width and sensing distance might make ultrasonic a better choice.

With so many different sensor technologies available and factors like target material and sensing distance being such important factors, choosing the best sensor for an application can be demanding. A trusted expert who is familiar with these different technologies and the factors related to your applications and materials can help you confidently move toward the smart factory of the future.

The 5 Most Common Types of Fixed Industrial Robots

The International Federation of Robotics (IFR) defines five types of fixed industrial robots: Cartesian/Gantry, SCARA, Articulated, Parallel/Delta and Cylindrical (mobile robots are not included in the “fixed” robot category). These types are generally classified by their mechanical structure, which dictates the ways they can move.

Based on the current market situation and trends, we have modified this list by removing Cylindrical robots and adding Power & Force Limited Collaborative robots. Cylindrical robots have a small, declining share of the market and some industry analysts predict that they will be completely replaced by SCARA robots, which can cover similar applications at higher speed and performance. On the other hand, use of collaborative robots has grown rapidly since their first commercial sale by Universal Robots in 2008. This is why collaborative robots are on our list and cylindrical/spherical robots are not.

Therefore, our list of the top five industrial robot types includes:

    • Articulated
    • Cartesian/Gantry
    • Parallel/Delta
    • SCARA
    • Power & Force Limited Collaborative robots

These five common types of robots have emerged to address different applications, though there is now some overlap in the applications they serve. And range of industries where they are used is now very wide. The IFR’s 2021 report ranks electronics/electrical, automotive, metal & machinery, plastic and chemical products and food as the industries most commonly using fixed industrial robots. And the top applications identified in the report are material/parts handling and machine loading/unloading, welding, assembling, cleanrooms, dispensing/painting and processing/machining.

Articulated robots

Articulated robots most closely resemble a human arm and have multiple rotary joints–the most common versions have six axes. These can be large, powerful robots, capable of moving heavy loads precisely at moderate speeds. Smaller versions are available for precise movement of lighter loads. These robots have the largest market share (≈60%) and are growing between 5–10% per year.

Articulated robots are used across many industries and applications. Automotive has the biggest user base, but they are also used in other industries such as packaging, metalworking, plastics and electronics. Applications include material & parts handling (including machine loading & unloading, picking & placing and palletizing), assembling (ranging from small to large parts), welding, painting, and processing (machining, grinding, polishing).

SCARA robots

A SCARA robot is a “Selective Compliance Assembly Robot Arm,” also known as a “Selective Compliance Articulated Robot Arm.” They are compliant in the X-Y direction but rigid in the Z direction. These robots are fairly common, with around 15% market share and a 5-10% per year growth rate.

SCARA robots are most often applied in the Life Sciences, Semiconductor and Electronics industries. They are used in applications requiring high speed and high accuracy such as assembling, handling or picking & placing of lightweight parts, but also in 3D printing and dispensing.

Cartesian/Gantry robots

Cartesian robots, also known as gantry or linear robots, move along multiple linear axes. Since these axes are very rigid, they can precisely move heavy payloads, though this also means they require a lot of space. They have about 15% market share and a 5-10% per year growth rate.

Cartesian robots are often used in handling, loading/unloading, sorting & storing and picking & placing applications, but also in welding, assembling and machining. Industries using these robots include automotive, packaging, food & beverage, aerospace, heavy engineering and semiconductor.

Delta/Parallel robots

Delta robots (also known as parallel robots) are lightweight, high-speed robots, usually for fast handling of small and lightweight products or parts. They have a unique configuration with three or four lightweight arms arranged in parallelograms. These robots have 5% market share and a 3–5% growth rate.

They are often used in food or small part handling and/or packaging. Typical applications are assembling, picking & placing and packaging. Industries include food & beverage, cosmetics, packaging, electronics/ semiconductor, consumer goods, pharmaceutical and medical.

Power & Force Limiting Collaborative robots

We add the term “Power & Force Limiting” to our Collaborative robot category because the standards actually define four collaborative robot application modes, and we want to focus on this, the most well-known mode. Click here to read a blog on the different collaborative modes. Power & Force Limiting robots include models from Universal Robots, the FANUC CR green robots and the YuMi from ABB. Collaborative robots have become popular due to their ease of use, flexibility and “built-in” safety and ability to be used in close proximity to humans. They are most often an articulated robot with special features to limit power and force exerted by the axes to allow close, safe operation near humans or other machines. Larger, faster and stronger robots can also be used in collaborative applications with the addition of safety sensors and special programming.

Power & Force Limiting Collaborative robots have about 5% market share and sales are growing rapidly at 20%+ per year. They are a big success with small and mid-size enterprises, but also with more traditional robot users in a very broad range of industries including automotive and electronics. Typical applications include machine loading/unloading, assembling, handling, dispensing, picking & placing, palletizing, and welding.

Summary­

The robot market is one of the most rapidly growing segments of the industrial automation industry. The need for more automation and robots is driven by factors such as supply chain issues, changing workforce, cost pressures, digitalization and mass customization (highly flexible manufacturing). A broad range of robot types, capabilities and price points have emerged to address these factors and satisfy the needs of applications and industries ranging from automotive to food & beverage to life sciences.

Note: Market share and growth rate estimates in this blog are based on public data published by the International Federation of Robotics, Loup Ventures, NIST and Interact Analysis.

Protecting photoelectric and capacitive sensors

Supply chain and labor shortages are putting extra pressure on automation solutions to keep manufacturing lines running. Even though sensors are designed to work in harsh environments, one good knock can put a sensor out of alignment or even out of condition. Keep reading for tips on ways to protect photoelectric and capacitive sensors.

Mounting solutions for photoelectric sensors

Photoelectric sensors are sensitive to environmental factors that can cloud their view, like dust, debris, and splashing liquids, or damage them with physical impact. One of the best things to do from the beginning is to protect them by mounting them in locations that keep them out of harm’s way. Adjustable mounting solutions make it easier to set up sensors a little further away from the action. Mounts that can be adjusted on three axes like ball joints or rod-and-mount combinations should lock firmly into position so that vibration or weight will not cause sensors to move out of alignment. And mounting materials like stainless steel or plastic can be chosen to meet factors like temperature, accessibility, susceptibility to impact, and contact with other materials.

When using retroreflective sensors, reflectors and reflective foils need similar attention. Consider whether the application involves heat or chemicals that might contact reflectors. Reflectors come in versions, especially for use with red, white, infrared, and laser lights, or especially for polarized or non-polarized light. And there are mounting solutions for reflectors as well.

Considering the material and design of capacitive sensors

Capacitive sensors must also be protected based on their working environment, the material they detect, and where they are installed. Particularly, is the sensor in contact with the material it is sensing or not?

If there is contact, pay special attention to the sensor’s material and design. Foods, beverages, chemicals, viscous substances, powders, or bulk materials can degrade a sensor constructed of the wrong material. And to switch perspectives, a sensor can affect the quality of the material it contacts, like changing the taste of a food product. If resistance to chemicals is needed, housings made of stainless steel, PTFE, and PEEK are available.

While the sensor’s material is important to its functionality, the physical design of the sensor is also important. A working environment can involve washdown processes or hygienic requirements. If that is the case, the sensor’s design should allow water and cleaning agents to easily run off, while hygienic requirements demand that the sensor not have gaps or crevices where material may accumulate and harbor bacteria. Consider capacitive sensors that hold FDA, Ecolab, and CIP certifications to work safely in these conditions.

Non-contact capacitive sensors can have their own special set of requirements. They can detect material through the walls of a tank, depending on the tank wall’s material type and thickness. Plastic walls and non-metallic packaging present a smaller challenge. Different housing styles – flat cylindrical, discs, and block styles – have different sensing capabilities.

Newer capacitive technology is designed as an adhesive tape to measure the material inside a tank or vessel continuously. Available with stainless steel, plastic, or PTFF housing, it works particularly well when there is little space available to detect through a plastic or glass wall of 8mm or less. When installing the tape, the user can cut it with scissors to adjust the length.

Whatever the setting, environmental factors and installation factors can affect the functionality of photoelectric and capacitive sensors, sometimes bringing them to an untimely end. Details like mounting systems and sensor materials may not be the first requirements you look for, but they are important features that can extend the life of your sensors.

 

Detecting Liquid Media and Bubbles Using Optical Sensors

In my line of work in Life Sciences, we often deal with liquid media and bubble detection evaluation through a vessel or a tube. This can be done by using the absorption principle or the refraction principle with through-beam-configured optical sensors. These are commonly embedded in medical devices or lab instruments.

This configuration provides strong benefits:

    • Precise sensing
    • Ability to evaluate liquid media
    • Detect multiple events
    • High reliability

How does it work?

The refraction principle is based on the media’s refraction index. It uses an emitted light source (Tx) that is angled to limit the light falling on the receiver (Rx, Figure 1). When the light passes through a liquid, refraction causes the light to focus on the receiver as a beam (known as a “beam-make” configuration). All liquids and common vessel materials (silicon, plastic, glass, etc.) have a known refraction index. These sensors will detect those refraction differences and output a signal.

The absorption principle is preferred when a media’s absorption index is high. First, a beam is established through a vessel or tube (Figure 2). Light sources in the 1500nm range work best for aqueous-based media such as water. As a high absorption index liquid enters the tube, it will block the light (known as a beam-break configuration). The sensor detects this loss of light.

Discrete on-off signals are easily used by a control system. However, by using the actual light value information (commonly analog), more data can be extracted. This is becoming more popular now and can be done with either sensing principle. By using this light-value information, you can differentiate between types of media, measure concentrations, identify multiple objects (e.g., filter in an IV and the media) and much more.

There is a lot to know about through-beam sensors, so please leave a comment below if you have questions on how you can benefit from this technology.

Weld Immune vs. Weld Field Immune: What’s the difference? 

In today’s automotive plants and their tier suppliers, the weld cell is known to be one of the most hostile environments for sensors. Weld slag accumulation, elevated ambient temperatures, impacts by moving parts, and strong electromagnetic fields can all degrade sensor performance and cause false triggering. It is widely accepted that sensors will have a limited life span in most plants.

Poor sensor selection does mean higher failure rates which cause welders in all industries increased downtime, unnecessary maintenance, lost profits, and delayed delivery. There are many sensor features designed specifically to withstand these harsh welding environments and the problems that come along with them to combat this.

In the search for a suitable sensor for your welding application, you are sure to come across the terms weld immune and weld field immune. What do these words mean? Are they the same thing? And will they last in my weld cell?

Weld Immune ≠ Weld Field Immune

At first glance, it is easy to understand why someone may confuse these two terms or assume they are one and the same.

Weld field immune is a specific term referring to sensors designed to withstand strong electromagnetic fields. In some welding areas, especially very close to the weld gun, welders can generate strong magnetic fields. When this magnetic field is present, it can cause a standard sensor to perform intermittently, like flickering and false outputs.

Weld field immune sensors have special filtering and robust circuitry that withstand the influence of strong magnetic fields and avoid false triggers. This is also called magnetic field immune since they also perform well in any area with high magnetic noise.

On the other hand, weld immune is a broad term used to describe a sensor designed with any features that increase its performance in a welding application. It could refer to one or multiple sensor features, including:

    • Weld spatter resistant coatings
    • High-temperature resistance
    • Different housing or sensor face materials
    • Magnetic field immunity

A weld field immune sensor might be listed with the numerous weld immune sensors with special coatings and features, but that does not necessarily mean any of those other sensors are immune to weld fields. This is why it is always important to check the individual sensor specifications to ensure it is suitable for your application.

In an application where a sensor is failing due to impact damage or weld slag spatter, a steel face sensor with a weld resistant coating could be a great solution. If this sensor isn’t close to the weld gun and isn’t exposed to any strong magnetic fields, there is really no need for it to be weld field immune. The important features are the steel face and coating that can protect it against impact and weld slag sticking to it. This sensor would be classified as weld immune.

In another application where a sensor near the weld gun side of the welding procedure where MIG welding is performed, this location is subject to arc blow that can create a strong magnetic field at the weld wire tip location. In this situation, having a weld field immune sensor would be important to avoid false triggers that the magnetic field may cause. Additionally, being close to a MIG weld gun, it would also be wise to consider a sensor with other weld immune properties, like a weld slag resistant coating and a thermal barrier, to protect against high heat and weld slag.

Weld field immunity is just one of many features you can select when picking the best sensor for your application. Whether the issue is weld slag accumulation, elevated ambient temperatures, part impact, or strong electromagnetic fields, there are many weld immune solutions to consider. Check the placement and conditions of the sensors you’re using to decide which weld-immune features are needed for each sensor.

Click here for more on choosing the right sensor for your welding application.

 

Does Your Stamping Department Need a Checkup? Try a Die-Protection Risk Assessment

If you have ever walked through a stamping department at a metal forming facility, you have heard the rhythmic sound of the press stamping out parts, thump, thump. The stamping department is the heart manufacturing facility, and the noise you hear is the heartbeat of the plant. If it stops, the whole plant comes to a halt. With increasing demands for higher production rates, less downtime, and reduction in bad parts, stamping departments are under ever-increasing pressure to optimize the press department through die protection and error-proofing programs.

The die-protection risk assessment team

The first step in implementing or optimizing a die protection program is to perform a die-protection risk assessment. This is much like risk assessments conducted for safety applications, except they are done for each die set. To do this, build a team of people from various positions in the press department like tool makers, operators, and set-up teams.

Once this team is formed, they can help identify any incidents that could occur during the stamping operations for each die set and determine the likelihood and the severity of possible harm. With this information, they can identify which events have a higher risk/severity and determine what additional measures they should implement to prevent these incidents. An audit is possible even if there are already some die protection sensors in place to determine if there are more that should be added and verify the ones in place are appropriate and effective.

The top 4 die processes to check

The majority of quality and die protection problems occur in one of these three areas: material feed, material progression, and part- and slug-out detections. It’s important to monitor these areas carefully with various sensor technologies.

Material feed

Material feed is perhaps the most critical area to monitor. You need to ensure the material is in the press, in the correct location, and feeding properly before cycling the press. The material could be feeding as a steel blank, or it could come off a roll of steel. Several errors can prevent the material from advancing to the next stage or out of the press: the feed can slip, the stock material feeding in can buckle, or scrap can fail to drop and block the strip from advancing, to name a few. Inductive proximity sensors, which detect iron-based metals at short distances, are commonly used to check material feeds.

Material progression

Material progression is the next area to monitor. When using a progressive die, you will want to monitor the stripper to make sure it is functioning and the material is moving through the die properly. With a transfer die, you want to make sure the sheet of material is nesting correctly before cycling the press. Inductive proximity sensors are the most common sensor used in these applications, as well.

Here is an example of using two inductive proximity sensors to determine if the part is feeding properly or if there is a short or long feed. In this application, both proximity sensors must detect the edge of the metal. If the alignment is off by just a few millimeters, one sensor won’t detect the metal. You can use this information to prevent the press from cycling to the next step.

Short feed, long feed, perfect alignment

Part-out detection

The third critical area that stamping departments typically monitor is part-out detection, which makes sure the finished part has come out of the stamping

area after the cycle is complete. Cycling the press and closing the tooling on a formed part that failed to eject can result in a number of undesirable events, like blowing out an entire die section or sending metal shards flying into the room. Optical sensors are typically used to check for part-out, though the type of photoelectric needed depends on the situation. If the part consistently comes out of the press at the same position every time, a through-beam photo-eye would be a good choice. If the part is falling at different angles and locations, you might choose a non-safety rated light grid.

Slug-ejection detection

The last event to monitor is slug ejection. A slug is a piece of scrap metal punched out of the material. For example, if you needed to punch some holes in metal, the slug would be the center part that is knocked out. You need to verify that the scrap has exited the press before the next cycle. Sometimes the scrap will stick together and fail to exit the die with each stroke. Failure to make sure the scrap material leaves the die could affect product quality or cause significant damage to the press, die, or both. Various sensor types can ensure proper scrap ejection and prevent crashes. The picture below shows a die with inductive ring sensors mounted in it to detect slugs as they fall out of the die.

Just like it is important to get regular checkups at the doctor, performing regular die-protection assessments can help you make continuous improvements that can increase production rates and reduce downtime. Material feed, material progression, part-out and slug-out detection are the first steps to optimize, but you can expand your assessments to include areas like auxiliary equipment. You can also consider smart factory solutions like intelligent sensors, condition monitoring, and diagnostics over networks to give you more data for preventative maintenance or more advanced error-proofing. The key to a successful program is to assemble the right team, start with the critical areas listed above, and learn about new technologies and concepts that are becoming available to help you plan ways to improve your stamping processes.