Buying a Machine Vision System? Focus on Capabilities, Not Cost

Gone are the days when an industrial camera was used only to take a picture and send it to a control PC. Machine vision systems are a much more sophisticated solution. Projects are increasingly demanding image processing, speed, size, complexity, defect recognition and so much more.

This, of course, adds to the new approach in the field of software, where deep learning and artificial intelligence play a bigger and bigger role. There is often a lot of effort behind improved image processing, however,  some people, if only a few, have realized that part of it can already be processed by that little “dummy” industrial camera.

I will try to briefly explain to you in the next few paragraphs how to achieve this in your application. Thanks to that, you will be able to get some of these benefits:

  • Reduce the amount of data
  • Relieve the entire system
  • Generate the maximum performance potential
  • Simplify the hardware structure
  • Reduce the installation work required
  • Reduce your hardware costs
  • Reduce your software costs
  • Reduce your development expenses

How to achieve it?  

Try to use more intelligent industrial cameras, which have a built-in internal memory sometimes called a buffer. Together with FPGA (field programmable gate array) they will do a lot of work that will appreciate your software for image processing. These functions are often also called pre-processing features.

What if you have a project where the camera must send images much faster than the USB or Ethernet interface allows?

For simple cameras, this would mean using a much faster interface, which of course would make the complete solution more expensive. Instead, you can use the Smart Framer Recall function in standard USB and GigE cameras, which generates small preview images with reduced resolution (thumbnails) with an extremely accelerated number of frames per second, which are transferred to the host PC with IDs. At the same time, the corresponding image in full resolution is archived in the camera’s image memory. If the image is required in full resolution, the application sends a request and the image is transferred in the same data stream as the preview image.

The function is explained in this video.

Is there a simpler option than a line scan camera? Yes!

Many people struggle to use line scan cameras and it is understandable. They are not easy to configurate, are hard to install, difficult to properly set and few people can modify them. You can use an area scan camera in line scan mode. The biggest benefit is standard interface: USB3 Vision and GigE Vision instead of CoaXPress and Cameralink. This enables inspection of round/rotating bodies or long/endless materials at high speed (like line scan cameras). Block scan mode acquires an Area of Interest (AOI) block which consists of several lines. The user defines the number of AOI blocks which are used to create one image. This minimizes the overhead, which you would have instead when transferring AOI blocks as single images using the USB3 Vision and GigE Vision protocols.

The function is explained in this video.

Polarization has never been easier

Sony came with a completely new approach to — a polarized filter . Until this new approach was developed, everyone just used a polarization filter in front of the lens and combined it with polarized lighting. With the polarized filter, above the pixel array is a polarizer array and each pixel square contains 0°, 45°, 90°, and 135° of polarization.

 

What is the best part of it? It doesn’t matter if you need a color or monochrome version. There are at least 5️ applications when you want to use it:

  • Remove reflection – > multi-plane surfaces or bruise/defect detection
  • Visual inspection – > detect fine scratches or dust
  • Contrast improvement -> recognize similar objects or colors
  • 3D/Stress recognition -> quality analysis
  • People/vehicle detection -> using your phone while driving

Liquid lens is very popular in smart sensor technology. When and why do you want to use it with an Industrial camera?  

 

Liquid lens is a single optical element like a traditional lens made from glass. However, it also includes a cable to control the focal length. In addition, it contains a sealed cell with water and oil inside. The technology uses an electrowetting process to achieve superior autofocus capabilities.

Benefits to the traditional lenses are obvious. It doesn’t have any moving mechanical parts. Thanks to that, they are highly resistant to shocks and vibrations. Liquid lens is a perfect fit for applications where you need to observe or inspect objects with different sizes and/or working distances and you need to react very quickly. One  liquid lens can do the work of multiple-image systems.

To connect the liquid lens, it requires the RS232 port in the camera plus a DC power from 5 to 24 Volt. An intelligent industrial camera is able to connect with the camera directly and the lens uses the power supply of the camera.

 

Reduce Packaging Downtime with Machine Vision

Packaging encompasses many different industries and typically has several stages in its process. Each industry uses packaging to accomplish specific tasks, well beyond just acting as a container for a product. The pharmaceutical industry for example, typically uses its packaging as a means of dispensing as well as containing. The food and beverage industry uses packaging as a means of preventing contamination and creating differentiation from similar products. Consumer goods typically require unique product containment methods and have a need for “eye-catching” differentiation.

The packaging process typically has several stages. For example, you have primary packaging where the product is first placed in a package, whether that is form-fill-seal bagging or bottle fill and capping. Then secondary packaging that the consumer may see on the shelf, like cereal boxes or display containers, and finally tertiary packaging or transport packaging where the primary or secondary packaging is put into shipping form. Each of these stages require verification or inspection to ensure the process is running properly, and products are properly packaged.

1

Discrete vs. Vision-Based Error Proofing

With the use of machine vision technology, greater flexibility and more reliable operation of the packaging process can be achieved. Typically, in the past and still today, discrete sensors have been used to look for errors and manage product change-over detection. But with these simple discrete sensing solutions come limitations in flexibility, time consuming fixture change-overs and more potential for errors, costing thousands of dollars in lost product and production time. This can translate to more expensive and less competitively priced products on the store selves.

There are two ways implementing machine vision can have a benefit toward improving the scheduled line time. The first is reducing planned downtime by reducing product change over and fixturing change time. The other is to decrease unplanned downtime by catching errors right away and dynamically rejecting them or bringing attention to line issues requiring correction and preventing waste. The greatest benefit vision can have for production line time is in reducing the planned downtime for things like product changeovers. This is a repeatable benefit that can dramatically reduce operating costs and increase the planned runtime. The opportunities for vision to reduce unplanned downtime could include the elimination of line jams due to incorrectly fed packaging materials, misaligned packages or undetected open flaps on cartons. Others include improperly capped bottles causing jams or spills and improper adjustments or low ink causing illegible labeling and barcodes.

Cost and reliability of any technology that improves the packaging process should always be proportional to the benefit it provides. Vision technologies today, like smart cameras, offer the advantages of lower costs and simpler operation, especially compared to the older, more expensive and typically purpose-built vision system counterparts. These new vision technologies can also replace entire sensor arrays, and, in many cases, most of the fixturing at or even below the same costs, while providing significantly greater flexibility. They can greatly reduce or eliminate manual labor costs for inspection and enable automated changeovers. This reduces planned and unplanned downtime, providing longer actual runtime production with less waste during scheduled operation for greater product throughput.

Solve Today’s Packaging Challenges

Using machine vision in any stage of the packaging process can provide the flexibility to dramatically reduce planned downtime with a repeatable decrease in product changeover time, while also providing reliable and flexible error proofing that can significantly reduce unplanned downtime and waste with examples like in-line detection and rejection to eliminate jams and prevent product loss. This technology can also help reduce or eliminate product or shipment rejection by customers at delivery. In today’s competitive market with constant pressure to reduce operating costs, increase quality and minimize waste, look at your process today and see if machine vision can make that difference for your packaging process.

RFID Minimizes Errors, Downtime During Format Change

Today’s consumer packaged goods (CPG) market is driving the need for greater agility and flexibility in packaging machinery. Shorter, more customized runs create more frequent machine changeover. Consequently, reducing planned and unplanned downtime at changeover is one of the key challenges CPG companies are working to improve.

In an earlier post, I discussed operator guided changeover for reducing time and errors associated with parts that must be repositioned during format change.

In this post, I will discuss how machine builders and end users are realizing the benefits of automated identification and validation of mechanical change parts.

In certain machines, there are parts that must be changed as part of a format change procedure. For example, cartoning machines could have 20-30 change parts that must be removed and replaced during this procedure.

This can be a time consuming and error-prone process. Operators can forget to change a part or install the wrong part, which causes downtime during the startup process while the error is located and corrected. In the worst scenarios, machines can crash if incorrect parts are left in the machine causing machine damage and significant additional downtime.

To prevent these mistakes, CPG companies have embraced RFID as a way to identify change parts and validate that the correct parts have been installed in the machine prior to startup. By doing so, these companies have reduced downtime that can be caused by mistakes. It has also helped them train new operators on changeover procedures as the risk of making a mistake is significantly reduced.

Selecting the correct system

When looking to add RFID for change part validation, the number of change parts that need to be identified and validated is a key consideration. RFID operating on the 13.56 MHz (HF) frequency has proven to be very reliable in these applications. The read range between a read head and tag is virtually guaranteed in a proper installation. However, a read head can read only a single tag, so an installation could need a high number of read heads on a machine with a lot of change parts.

1

It is also possible to use the 900 MHz (UHF) frequency for change part ID. This allows a single head to read multiple tags at once. This can be more challenging to implement, as UHF is more susceptible to environmental factors when determining read range and guaranteeing consistent readability. With testing and planning, UHF has been successfully and reliably implemented on packaging machines.

2

Available mounting space and environmental conditions should also be taken into consideration when selecting the correct devices. RFID readers and tags with enhanced IP ratings are available for washdown harsh environmental conditions. Additionally, there are a wide range of RFID read head and tag form factors and sizes to accommodate different sized machines and change parts.

 

 

Manufacturers Track Goods, Reduce Errors, Decrease Workload with RFID

More and more, retailer sellers are starting to require that manufacturers place RFID tags on their products before they leave the production facility and are shipped to those retail locations. From high-end electronics all the way down to socks and underwear are being tagged.

These tags are normally supplied by the retailer or through a contracted third party. Typically disposable UHF paper tags, they are only printed with a TID number and a unique EPC that may or may not correspond to the UPC and barcode that was used in the past. Most cases I have seen require that the UPC and a barcode be printed on these RFID tags so there is information available to the human eye and a barcode scanner when used.

While this is being asked for by the retailers, manufacturers can use these tags to their own advantage to track what products are going out to their shipping departments and in what quantities. This eliminates human error in the tracking process, something that has been a problem in the past, while also reducing workload as boxes of finished goods no longer must be opened, counted and inspected for accuracy.

A well-designed RFID portal for these items to pass through can scan for quantities and variances in types of items in boxes as they pass through the portal. Boxes that do not pass the scan criteria are then directed off to another area for rework and reevaluation. Using human inspection for just the boxes that do not pass the RFID scan greatly reduces the labor effort and expedites the shipping process.

I recently assisted with a manufacturer in the garment industry who was having to tag his garments for a major retailer with RFID tags that had the UPC and a barcode printed on them. The tags were supplied through the retailer and the EPCs on the tags were quite different then the UPC numbers printed on them.

The manufacturer wanted to know how many garments of each type were in each box. Testing showed that this could be done by creating a check point on his conveyor system and placing UHF RFID antennas in appropriate locations to ensure that all the garments in the box were detected and identified.

In this case, the manufacturer wanted was a simple stand-alone system that would display a count of different types of garments. An operator reviewed the results on a display and decided based on the results whether to accept the box and let the conveyor forward it to shipping or reject it and divert it to another conveyor line for inspection and adjustment.

While this system proved to be relatively simple and inexpensive, it satisfied the desires of the manufacturer. It is, however, possible to connect an RFID inspection station to a manufacturing information system that would know what to expect in each box and could automatically accept or reject boxes based on the results of the scans without human intervention and/or human error.

Beyond the Human Eye

Have you ever had to squint, strain, adjust your glasses, or just ask for someone with better vision to help read something for you? Now imagine having to adjust your eyesight 10 times a second. This is the power of machine vision. It can adjust, illuminate, filter, focus, read, and relay information that our eyes struggle with. Although the technology is 30 years old, machine vision is still in its early stages of adoption within the industrial space. In the past, machine vision was ‘nice to have’ but not really a ‘need to have’ technology because of costs, and the technology still not being refined. As traceability, human error proofing, and advanced applications grow more common, machine vision has found its rhythm within factory automation. It has evolved into a robust technology eager to solve advanced applications.

Take, for example, the accurate reading, validation, and logging of a date located on the concaved bottom of an aluminum can. Sometimes, nearly impossible to see with the human eye without some straining involved, it is completely necessary to ensure it is there to be able to sell the product. What would be your solution to ensuring the date stamp is there? Having the employee with the best eyes validate each can off the line? Using more ink and taking longer to print a larger code? Maybe adding a step by putting a black on white contrasting sticker on the bottom that could fall off? All of these would work but at what cost? A better solution is using a device easily capable of reading several cans a second even on a shiny, poor angled surface and saving a ton of unnecessary time and steps.

Machine vison is not magic; it is science. By combining high end image sensors, advanced algorithms, and trained vision specialists, an application like our aluminum can example can be solved in minutes and run forever, all while saving you time and money. In Figure 1 you can see the can’s code is lightly printed and overcome by any lighting due to hotspots from the angle of the can. In Figure 2 we have filtered out some of the glare, better defined the date through software, and validate the date is printed and correct.

Take a moment to imagine all the possibilities machine vision can open for your production process and the pain points it can alleviate. The technology is ready, are you?

Figure 1
Figure 1
Figure 2
Figure 2

Palletized Automation with Inductive Coupling

RFID is an excellent way to track material on a pallet through a warehouse. A data tag is placed on the pallet and is read by a read/write head when it comes in range. Commonly used to identify when the pallet goes through the different stages of its scheduled process, RFID provides an easy way to know where material is throughout a process and learn how long it takes for product to go through each stage. But what if you need I/O on the pallet itself or an interchangeable end-of-arm tool?

Inductive Coupling

1

Inductive coupling delivers reliable transmission of data without contact. It is the same technology used to charge a cell phone wirelessly. There is a base and a remote, and when they are aligned within a certain distance, power and signal can be transferred between them as if it was a standard wire connection.

2

When a robot is changing end-of-arm tooling, inductive couplers can be used to power the end of arm tool without the worry of the maintenance that comes with a physical connection wearing out over time.

For another example of how inductive couplers can be used in a process like this, let’s say your process requires a robot to place parts on a metal product and weld them together. You want I/O on the pallet to tell the robot that the parts are in the right place before it welds them to the product. This requires the sensors to be powered on the pallet while also communicating back to the robot. Inductive couplers are a great solution because by communicating over an air gap, they do not need to be connected and disconnected when the pallet arrives or leaves the station. When the pallet comes into the station, the base and remote align, and all the I/O on the pallet is powered and can communicate to the robot so it can perform the task.

Additionally, Inductive couplers can act as a unique identifier, much like an RFID system. For example,  when a pallet filled with product A comes within range of the robot, the base and remote align telling the robot to perform action A. Conversely, when a pallet loaded with product B comes into range, the robot communicates with the pallet and knows to perform a different task. This allows multiple products to go down the same line without as much changeover, thereby reducing errors and downtime.

What Machine Vision Tool is Right for Your Application?

Machine vision is an inherent terminology in factory automation but selecting the most efficient and cost-effective vision product for your project or application can be tricky.

We can see machine vision from many angles of view, for example market segment and application or image processing deliver different perspectives. In this article I will focus on the “sensing element” itself, which scan your application.

The sensing element is a product which observes the application, analyzes it and forwards an evaluation. PC is a part of machine vision that can be embedded with the imager or separated like the controller. We could take many different approaches, but let’s look at the project according to the complexity of the application. The basic machine vision hardware comparison is

  1. smart sensors
  2. smart cameras
  3. vision systems

Each of these products are used in a different way and they fit different applications, but what do they all have in common? They must have components like an imager, lens, lighting, SW, processor and output HW. All major manufacturing companies, regardless of their focus or market segment, use these products, but what purpose and under what circumstances are they used?

Smart Sensors

Smart sensors are dedicated to detecting basic machine vision applications. There are hundreds of different types on the market and they must quickly provide standard performance in machine vision. Don’t make me wrong, this is not necessarily a negative. These sensors are used for simple applications. You do not want to wait seconds to detect QR code; you need a response time in milliseconds. Smart sensors typically include basic functions like:

  • data matrix, barcode and 2D code reading
  • presence of the object,
  • shape, color, thickness, distance

They are typically used in single purpose process and you cannot combine all the features.

Smart Cameras

Smart cameras are used in more complex projects. They provide all the function of smart sensors, but with more complex functions like:

  • find and check object
  • blob detection
  • edge detection
  • metrology
  • robot navigation
  • sorting
  • pattern recognition
  • complex optical character recognition

Due to their complexity, you can use them to find products with higher resolution , however it is not a requirement. Smart cameras can combine more programs and can do parallel several functions together. Image processing is more sophisticated, and limits may occur in processing speed, because of embedded PC.

Vision Systems

Typically, machine vision systems are used in applications where a smart camera is not enough.

Vision system consists of industrial cameras, controller, separated lighting and lens system, and it is therefore important to have knowledge of different types of lighting and lenses. Industrial cameras provide resolution from VGA up to 30Mpxl and they are easy connected to controller.

Vision systems are highly flexible systems. They provide all the functions from smart sensors and cameras. They bring complexity as well as flexibility. With a vision system, you are not limited by resolution or speed. Thanks to the controller, you have dedicated and incomparable processing power which provides multi-speed acceleration.

And the most important information at the end. How does it look with pricing?

You can be sure that smart sensor is the most inexpensive solution. Basic pricing is in the range of $500 – $1500. Smart cameras can cost $2000 – $5000, while a vision system cost would start closer to $6000. It may look like an easy calculation, but you need to take into consideration the complexity of your project to determine which is best for you.

Pros Cons Cost
Smart sensor
    • Easy integration
    • Simple configuration
    • Included lightning and lenses
    • Limited functions
    • Closed SW
    • Limited programs/memory
$
Smart camera
    • Combine more programs together
    • Available functions
    • Limited resolution
    • Slower speed due to embedded PC
$$
Vision system
    • Connect more cameras(up to 8)
    • Open SW
    • Different resolution options
    • Requires skilled machine vision specialist
    • Requires knowledge of lightning and lenses
    • Increased integration time
$$$

Capture

Not All RFID is Created Equal: Is Yours Built for an Industrial Environment?

The retail environments where products are sold look nothing like the industrial environments where they are produced (think of the difference between a new car dealership and an automotive manufacturing plant). Yet the same RFID products developed for retail stores and their supply chain operations are still marketed to manufacturers for production operations. These products may work fine in warehouses, but that does not necessarily qualify them as industrial grade.

IO-Link_RFID

So what are the differences between retail and industrial RFID?

Production environments often require a level of ruggedness, performance, and connectivity that only purpose-built industrial equipment can reliably satisfy. For example, general-purpose RFID equipment may have the physical Ethernet port needed to connect to a PC or server, but will not support EtherNet/IP, Profinet or other industrial protocols that run on PLCs and other industrial automation control equipment. Many retail grade readers need to be supported with an additional protocol conversion, which can require external hardware and slow system performance, and adds to implementation time, difficulty, and expense.

When evaluating RFID equipment, it is essential to make the distinction between what is possible for use in the environment and what is optimal and, therefore, more reliable. There are three fundamental qualities to consider that can determine if RFID systems will perform reliably in demanding production environments:

  • Will the RFID system integrate seamlessly with industrial control systems?
  • Will it provide the reliability and speed that production and their information systems tied in require?
  • Can it maintain uptime and performance long term – will it last on the production line?

RFID is often marketed as a “solution,” however in manufacturing operations, it is almost always used as a supporting technology to provide data and visibility to the MES, ERP, e-Kanban, robotics, asset tracking, material handling, quality control and other systems that run in production facilities. Failure to accurately provide data to these systems at the reliability and speed levels they require eliminates the value of using RFID.

The physical environments in industrial and supply chain settings cause RFID technology to perform differently. Tag density can be a consideration for industrial RFID users like retail, but an industrial environment has much more challenging and powerful potential interference sources, for example, the presence of metal found in most industrial products and environments.

When determining whether RFID products are suitable for a specific environment, it is important to look beyond published marketing hype and misleading specifications. Consider the design and construction of the product and how it could be affected by various work processes. Whenever possible, you should test the products where they will be used rather than in a lab or demonstration area, because the actual work location has interference and environmental conditions that may be overlooked and impossible to duplicate elsewhere.

The key attributes that differentiate industrial RFID equipment from supply chain-oriented alternatives include:

  • Native support for industrial protocols;
  • High tag read reliability and the ability to continuously operate at speeds that won’t slow production systems;
  • Durable housing with secure connectors with IP65 or better rating and relevant certifications for shock, vibration and temperature resistance;
  • The ability to support multiple RFID technologies and supporting devices as needed, including sensors, PLCs, IO-Link, and other industrial automation equipment.

Compromising on any of these criteria will likely result in unnecessary implementation time, support, and replacement costs and increase the risk for system failure.

Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!

 

 

RFID for Improved Operator Accountability

One of the most fascinating parts of my job is making site visits to manufacturing plants across the country. Getting a first-hand look at how things are made in a modern manufacturing facility is nothing short of amazing. Robots whirling, automatic guided vehicles (AGV’s) navigating the floor, overhead cranes and gantries lifting tons of material over-head, flames shooting from ovens, and metal chips flying create an exciting, but sometimes dangerous, work environment. To some people this may seem like a good reason to avoid these places, but if you are fitted with the appropriate personal protective equipment (PPE) the chances for injury are minimal.

The safety of every human in the plant is the top priority.  This is why there are requirements to wear PPE that is suitable for the environment and the hazards within. The challenge is confirming that everyone is aware of the required equipment, and that they indeed are wearing that equipment.

This can be accomplished with a simple RFID kiosk system. When an operator scans their ID they are asked a series of questions to ensure they are wearing the correct PPE. If the operator confirms they are wearing all the required gear, they can begin work in the area they are assigned. If not, a supervisor will be notified so the correct equipment can be obtained. This method can serve as a daily reminder for what needs to be worn while holding the operator accountable.

Ultimately, it is up to the plant and occupational safety organizations to define what needs to be worn and where it should be worn, but it is the responsibility of the operator to actually wear it. The same system can be used for vendors, visitors or anyone else who ventures out on the plant floor.