Why Use Ultrasonic Sensors?

by Nick Smith

When choosing what sensor to use in different applications, it is important to first look at how they operate. Capacitive sensors generate an electrical field that can detect various liquids or other materials, such as glass, wood, paper, ceramic, and more at a close. Photoelectric sensors emit a light beam that is either received by a light sensor or bounced back to the emitter to detect an object’s presence or measure the distance to an object. Ultrasonic sensors bounce a sound wave off objects to detect them, which can make them a good solution for a surprising variety of uses.

How ultrasonic sensors operate

Ultrasonic sensors operate by emitting an ultra-high frequency sound wave that ranges from 300 MHz to 3 GHz, which is well above the 15-17 kHz range that humans can hear that bounces off the target object. The sensor measures the amount of time that sound wave takes to return to calculate the distance to the object. Ultrasonic sensors send these sound waves in a wider beam than a photoelectric uses, so they can more easily detect objects in a dusty or dirty environment. And with a greater sensing distance than capacitive sensors, they can be installed at a safe distance and still function effectively

Common applications for ultrasonic sensors

These capabilities together make ultrasonic sensors a great choice for tasks like detecting fill level, stack height and object presence. Sound waves are unaffected by the color, transparency, or consistency of an object or liquid, which makes it an obvious contender in the packaging, food, and beverage industry and many other industries with similar manufacturing processes.

So to monitor glass bottles as they travel on a conveyor, an ultrasonic sensor could be a good choice. These sensors will consistently work well detecting clear or reflective materials such as water, paint, glass, etc., which can cause difficulties for photoelectric sensors. Another benefit of these sensors is the ability to mount them further away from their targets. For example, there are ultrasonics that can be mounted between 20 to 8000 mm away from the object. After tuning your setup, you can detect very small objects as easily as larger, more visible items.

Another common application for ultrasonic sensors is monitoring boxes. Properly implemented ultrasonic sensors can detect different sizes of boxes as they travel on a conveyor belt by constantly emitting and receiving sound waves. This means that each box or object will be measured by the sound wave. Different photoelectric and capacitive sensors may fail to detect the full presence of an object and may only be able to detect a specific point on an object.

When it comes to all types of different fill-level applications, there are many ways a sensor can monitor various liquids and solids. The width of an ultrasonic beam can be increased to detect a wider area of solid material in a hopper or decreased to give a precise measurement on liquid levels. This ability to detect a smaller or larger surface area gives the user more utility when deciding how to meet the requirements of an application. Although capacitive sensors can detect fill levels very precisely as well, factors like beam width and sensing distance might make ultrasonic a better choice.

With so many different sensor technologies available and factors like target material and sensing distance being such important factors, choosing the best sensor for an application can be demanding. A trusted expert who is familiar with these different technologies and the factors related to your applications and materials can help you confidently move toward the smart factory of the future.

Detecting Liquid Media and Bubbles Using Optical Sensors

In my line of work in Life Sciences, we often deal with liquid media and bubble detection evaluation through a vessel or a tube. This can be done by using the absorption principle or the refraction principle with through-beam-configured optical sensors. These are commonly embedded in medical devices or lab instruments.

This configuration provides strong benefits:

    • Precise sensing
    • Ability to evaluate liquid media
    • Detect multiple events
    • High reliability

How does it work?

The refraction principle is based on the media’s refraction index. It uses an emitted light source (Tx) that is angled to limit the light falling on the receiver (Rx, Figure 1). When the light passes through a liquid, refraction causes the light to focus on the receiver as a beam (known as a “beam-make” configuration). All liquids and common vessel materials (silicon, plastic, glass, etc.) have a known refraction index. These sensors will detect those refraction differences and output a signal.

The absorption principle is preferred when a media’s absorption index is high. First, a beam is established through a vessel or tube (Figure 2). Light sources in the 1500nm range work best for aqueous-based media such as water. As a high absorption index liquid enters the tube, it will block the light (known as a beam-break configuration). The sensor detects this loss of light.

Discrete on-off signals are easily used by a control system. However, by using the actual light value information (commonly analog), more data can be extracted. This is becoming more popular now and can be done with either sensing principle. By using this light-value information, you can differentiate between types of media, measure concentrations, identify multiple objects (e.g., filter in an IV and the media) and much more.

There is a lot to know about through-beam sensors, so please leave a comment below if you have questions on how you can benefit from this technology.

Does Your Stamping Department Need a Checkup? Try a Die-Protection Risk Assessment

If you have ever walked through a stamping department at a metal forming facility, you have heard the rhythmic sound of the press stamping out parts, thump, thump. The stamping department is the heart manufacturing facility, and the noise you hear is the heartbeat of the plant. If it stops, the whole plant comes to a halt. With increasing demands for higher production rates, less downtime, and reduction in bad parts, stamping departments are under ever-increasing pressure to optimize the press department through die protection and error-proofing programs.

The die-protection risk assessment team

The first step in implementing or optimizing a die protection program is to perform a die-protection risk assessment. This is much like risk assessments conducted for safety applications, except they are done for each die set. To do this, build a team of people from various positions in the press department like tool makers, operators, and set-up teams.

Once this team is formed, they can help identify any incidents that could occur during the stamping operations for each die set and determine the likelihood and the severity of possible harm. With this information, they can identify which events have a higher risk/severity and determine what additional measures they should implement to prevent these incidents. An audit is possible even if there are already some die protection sensors in place to determine if there are more that should be added and verify the ones in place are appropriate and effective.

The top 4 die processes to check

The majority of quality and die protection problems occur in one of these three areas: material feed, material progression, and part- and slug-out detections. It’s important to monitor these areas carefully with various sensor technologies.

Material feed

Material feed is perhaps the most critical area to monitor. You need to ensure the material is in the press, in the correct location, and feeding properly before cycling the press. The material could be feeding as a steel blank, or it could come off a roll of steel. Several errors can prevent the material from advancing to the next stage or out of the press: the feed can slip, the stock material feeding in can buckle, or scrap can fail to drop and block the strip from advancing, to name a few. Inductive proximity sensors, which detect iron-based metals at short distances, are commonly used to check material feeds.

Material progression

Material progression is the next area to monitor. When using a progressive die, you will want to monitor the stripper to make sure it is functioning and the material is moving through the die properly. With a transfer die, you want to make sure the sheet of material is nesting correctly before cycling the press. Inductive proximity sensors are the most common sensor used in these applications, as well.

Here is an example of using two inductive proximity sensors to determine if the part is feeding properly or if there is a short or long feed. In this application, both proximity sensors must detect the edge of the metal. If the alignment is off by just a few millimeters, one sensor won’t detect the metal. You can use this information to prevent the press from cycling to the next step.

Short feed, long feed, perfect alignment

Part-out detection

The third critical area that stamping departments typically monitor is part-out detection, which makes sure the finished part has come out of the stamping

area after the cycle is complete. Cycling the press and closing the tooling on a formed part that failed to eject can result in a number of undesirable events, like blowing out an entire die section or sending metal shards flying into the room. Optical sensors are typically used to check for part-out, though the type of photoelectric needed depends on the situation. If the part consistently comes out of the press at the same position every time, a through-beam photo-eye would be a good choice. If the part is falling at different angles and locations, you might choose a non-safety rated light grid.

Slug-ejection detection

The last event to monitor is slug ejection. A slug is a piece of scrap metal punched out of the material. For example, if you needed to punch some holes in metal, the slug would be the center part that is knocked out. You need to verify that the scrap has exited the press before the next cycle. Sometimes the scrap will stick together and fail to exit the die with each stroke. Failure to make sure the scrap material leaves the die could affect product quality or cause significant damage to the press, die, or both. Various sensor types can ensure proper scrap ejection and prevent crashes. The picture below shows a die with inductive ring sensors mounted in it to detect slugs as they fall out of the die.

Just like it is important to get regular checkups at the doctor, performing regular die-protection assessments can help you make continuous improvements that can increase production rates and reduce downtime. Material feed, material progression, part-out and slug-out detection are the first steps to optimize, but you can expand your assessments to include areas like auxiliary equipment. You can also consider smart factory solutions like intelligent sensors, condition monitoring, and diagnostics over networks to give you more data for preventative maintenance or more advanced error-proofing. The key to a successful program is to assemble the right team, start with the critical areas listed above, and learn about new technologies and concepts that are becoming available to help you plan ways to improve your stamping processes.

Avoid Downtime in Metal Forming With Inductive & Photoelectric Sensors

Industrial sensor technology revolutionized how part placement and object detection are performed in metal forming applications. Inductive proximity sensors came into standard use in the industry in the 1960s as the first non-contact sensor that could detect ferrous and nonferrous metals. Photoelectric sensors detect objects at greater distances. Used together in a stamping environment, these sensors can decrease the possibility of missing material or incorrect placement that can result in a die crash and expensive downtime.

Inductive sensors

In an industrial die press, inductive sensors are placed on the bottom and top of the dies to detect the sheet metal for stamping. The small sensing range of inductive sensors allows operators to confirm that the sheet metal is correctly in place and aligned to ensure that the stamping process creates as little scrap as possible.

In addition, installing barrel-style proximity sensors so that their sensing face is flush with the die structure will confirm the creation of the proper shape. The sensors in place at the correct angles within the die will trigger when the die presses the sheet metal into place. The information these sensors gather within the press effectively make the process visible to operators. Inductive sensors can also detect the direction of scrap material as it is being removed and the movement of finished products.

Photoelectric sensors

Photoelectric sensors in metal forming have two main functions. The first function is part presence, such as confirming that only a single sheet of metal loads into the die, also known as double-blank detection. Doing this requires placing a distance-sensing photoelectric sensor at the entry-way to the die. By measuring the distance to the sheet metal, the sensor can detect the accidental entry of two or more sheets in the press. Running the press with multiple metal sheets can damage the die form and the sensors installed in the die, resulting in expensive downtime while repairing or replacing the damaged parts.

The second typical function of photoelectric sensors verifies the movement of the part out of the press. A photoelectric light grid in place just outside the exit of the press can confirm the movement of material out before the next sheet enters into the press. Additionally, an optical window in place where parts move out will count the parts as they drop into a dunnage bin. These automated verification steps help ensure that stamping processes can move at high speeds with high accuracy.

These examples offer a brief overview of the sensors you mostly commonly find in use in a die press. The exact sensors are specific to the presses and the processes in use by different manufacturers, and the technology the stamping industry uses is constantly changing as it advances. So, as with all industrial automation, selecting the most suitable sensor comes down to the requirements of the individual application.

Add Safety and Accessibility With Remote Amplifiers

Why did the sensor cross the road?

To work remotely, of course.

Even sensors are working remotely these days, and some have good reason. Many applications dictate that the sensing element be placed remotely from its associated electronics. Let’s looks at a few common examples of this.

This may be for safety’s sake, such as in oil and gas applications where housing the bulk of the electronics away from a hazardous area reduces the likelihood of an electrical discharge, or where there are environmental concerns, such as temperature or vibration. By placing the majority of the electronics safely away, only the minimal number of components are subjected to the extremes.

Another good reason for remote placement is accessibility. In some cases, for example, the sensor must be mounted in a difficult to reach place, and having remote electronics installed in a more accessible location allows for easier access for the needed periodic re-teaching, adjusting, etc.

Separate electronics are also used when the sensing element needs to be designed into a very tight space. These very small sensor elements are likely to be customized to fit into a device directly, often leaving no room for the remainder of the electronics.

Remote placement is typically used out of necessity, but it doesn’t have to limit sensor capability or performance.

A typical amplifier with jog button, selector switch, and display.
Typical amplifier with jog button, selector switch, and display

Separately housed electronics, known as amplifiers, can do more than just house the electronics that support the sensing elements; they also provide a way to configure the sensors through buttons and displays. The amplifier delivers the smart features that larger sensors possess, without increasing the sensor size.

Let’s take a look at an amplifier designed to work with the micromote photoelectric sensors.

Micromote photoelectric sensor with 2mm diameter.
Micromote photoelectric sensor with 2mm diameter

Micromotes are extremely small photoelectric sensors that direct a very tight beam of collimated light at a target. The light emission is specifically engineered for the application, either attenuating or refracting as it interacts with the object to be detected. Many of these applications involve detecting very small bubbles in a stream of fluid, micro-bubbles that are smaller than the human eye can detect.  Others may be used to detect the edge of a microscope slide or count very small drops of liquid.  They are precision engineered to detect small objects in small spaces.

The amplifier will receive a power source, and in return it will provide power to the sensing element. But beyond the supporting electronics, what else might a good amp do?

    • Provide a choice of output types (PNP/NPN/Analog/NO/NC)
    • Supply an adequate frequency response for the fast counting of objects
    • Use LED indicators to help troubleshoot connections and warn of unstable signals
    • Provide on/off signal delays (pulse stretching) for those super fast applications
    • Allow the signal hysteresis to be adjusted to suit the application
    • Provide a way to lock the set parameters from inadvertent changes
    • Offer an alarm output if the application is out of specified limits
    • Include a display to navigate through the menus and to display signal strength when operating
    • Teach the application through the use of selector switches
    • Deliver auto synchronization

So, the next time you have a demanding application that requires a sensor to work remotely, consider a premium amplifier — one that not only supports the sensing element, but provides the smart features that today’s best sensors offer. You just might find that working remotely has many advantages, including a more integrated final product, which is more accessible to tune, and with additional features.

Fork Sensors, the Best Choice for Range, Reliability, Ease of Installation

Photoelectric sensors are a staple within many industries when it comes to automation thanks to their non-contact detection over longer ranges than many other sensing types. Also available in a variety of housing types and protection classes to meet the specific demands of an application, they offer manufacturers many different variants and models. The range of styles can make selecting the perfect photoelectric sensor for your specific application challenging. This post highlights the benefits of through-beam sensors and why fork sensors specifically, are often the ideal sensor for the job.

Through-beam sensors can detect anything, regardless of color, texture or reflectivity. This makes them highly efficient in any application where material or parts need to be detected during the process. They require an emitter and receiver. The emitter sends a light beam toward the receiver. When this light beam is blocked, the sensor will trigger. A common example of this is the sensor system on a garage door that detects obstructions and keeps the door from closing. (The software can also inverse this, so the sensor triggers when the light beam is not obstructed. Read more about these light-on/dark-on modes).

Traditional Through-Beams vs. Fork Sensors

Through-beam photoelectric sensors are simple technology that are non-contact, reliable and can operate over distances up to 100 meters, making them a go-to for many applications. But they aren’t without fault. Because the emitter and receiver are typically in separate housings, the two parts must line up perfectly to work. This alignment takes extra time during assembly and is prone to problems in the future if the emitter or receiver move,  even slightly. Machine vibrations can cause a misalignment.

Fork sensors, also called C slot or U slot sensors, incorporate both the emitter and the receiver into a single body, providing the benefits of a through-beam sensor without the installation issues.

This allows for reduced installation and maintenance time of the sensor in several ways:

    • Mounting a single sensor instead of two
    • Half as many cables needed for networking
    • No touchy alignment needed when installing the sensor
    • No maintenance needed re-aligning the sensors in the future

Photoelectric fork sensors come with sensing windows widths up to 220 mm and a range of light sources to accommodate many application needs. Check them out the next time you are considering a photoelectric sensor and see if they’re the best choice for your application.

Photoelectric Sensors in the Packaging, Food, and Beverage Industry

The PFB industry requires the highest standards of quality and productivity when it comes to both their products and their equipment. In order to keep up with the rising demands to produce high quality parts quickly, many in the industry have incorporated photoelectric sensors into their lines. With their durable designs, accurate measurements and fast data output speeds, it is easy to see why. Combine the sensors’ benefits with the clean and well-lit environment of a PFB plant, and it begins to feel like this product was made specifically for the industry. There are many variants of photoelectric sensors, but the main categories are: through beam, diffuse, and retro-reflective sensors.

Through Beam

Through beam sensors come in many different shapes and sizes but the core idea stays the same. An emitter shoots LED red, red laser, infrared, or LED infrared light across an open area toward a receiver. If the receiver detects the light, the sensor determines nothing is present. If the light is not detected, this means an object has obstructed the light.

Applications:

  • Object detection during production
  • Detecting liquid in transparent bottles
  • Detecting, counting, and packaging tablets

Diffuse Beam

Diffuse beam sensors operate a little differently in that the emitter and receiver are in the same housing, often very closely to one another. With this sensor, the light beam is emitted out, the light bounces off a surface, and the light returns to the receiver. The major takeaway with the diffuse beam sensor is that the object being detected is also being used as the reflecting surface.

Applications:

  • Label detection
  • Monitoring the diameter of film
  • Verifying stack height on pallet

Retro-Reflective Beam

Retro-reflective sensors are similar to diffuse beam sensors in that the emitter and receiver are also contained within the same housing. But this sensor requires an additional component — a reflector. This sensor doesn’t use the object itself to reflect the light but instead uses a specified reflector that polarizes the light, eliminating the potential for false positive readings. Retro-reflective sensors are a strong alternative to through beam when there isn’t room for two separate sensor heads.

Applications:

  • Transparent film detection
  • Detection of shrink-wrapped pallets
  • Detecting any reflective target

Which Photoelectric Sensor Should I Be Using?

There are many variations within the category of photoelectric sensors, so how do you select the best sensor for your application? Below, I will discuss the benefits of different types of photoelectric sensors and sensing modes.

Through Beam

Through beam sensors consist of an emitter and a receiver. The emitter produces a beam of light, while the receiver identifies whether that light is present or not. So, when an object breaks the beam, an output is triggered by the receiver. Some of the advantages of using the simple through beam technology is that, unlike some of the other photoelectric sensors, it doesn’t matter the color, texture or transparency of your target.

Retroreflective

What if you would like to have a through beam sensor, but don’t have enough room for two sensor heads in your application? Retroreflective sensors have an emitter and receiver within one housing and use a high-quality reflector to reflect the light beam back to the sensor head. This allows for easy connection of just one sensor head, but it doesn’t have the range of your typical through beam sensor. When using these types of sensors, you must factor in how small or reflective your target material is. If you are trying to sense a highly reflective material, then the light reflected back to the receiver could cause the sensor to think an object is present. If you are having these problems, but still want to use a retroreflective sensor, then you should consider versions with a polarizing lens. These lenses make the sensors insensitive to interference with shiny, reflective material.

Fork

Fork sensors include the transmitter and receiver in one housing, and they are already aligned. This saves time and energy during set up. Fork sensors are fantastic for small component and detail detection.

Diffuse

If you don’t have room for a sensor head on each side of your application or even a reflector, or you have had trouble with the alignment of a retroreflective sensor, a diffuse sensor may be a good choice. Diffuse sensors use technology to be able reflect light off the material and back to the sensor. This eliminates the need for a second device or reflector. This significantly reduces set up. You can simply place your target material in front of the sensor and teach it to that point. Once your object reaches that point, the light will be reflected back to the sensor, producing the output. While they are simpler to install, they also have a shorter range compared to through beam sensors and may be affected by your material’s color or the reflectivity or your background… Unless, you have a diffuse sensor with background suppression.

Background Suppression

Diffuse sensors have an emitter and receiver in one housing. In diffuse sensors with background suppression, the emitter and receiver are at a fixed angle so that they intersect at the position of your target material. This will help narrow the operating area (area in which your target material will be entering) and not let reflective material in the background have an influence in your detection.

Conclusion

Photoelectric sensors are simple to use when you need non-contact detection of a material’s presence, color, distance, size or shape, and with their various types, housing and sizes, you can find one that is ideal for your application.

Photoelectric Methods of Operation

Photoelectric sensors vary in their operating principles and can be used in a variety of ways, depending on the application. They can be used to detect whether an object is present, determine its position, measure level, and more. With so many types, it can be hard to narrow down the right sensor for your application while accounting for any environmental conditions. Below will give a brief overview of the different operating principles used in photoelectric sensors and where they can be best used.

Diffuse

Diffuse sensors are the most basic type of photoelectric sensor as they only require the sensor and the object being detected. The sensor has a built-in emitter and receiver, so as light is sent out from the emitter and reaches an object, the light will then bounce off the object and enter the receiver. This sends a discrete signal that an object is within the sensing range. Due to the reflectivity being target-dependent, diffuse sensors have the shortest range of the three main discrete operating principles. Background suppression sensors work under the same principle but can be taught to ignore objects in the background using triangulation to ensure any light beyond a certain angle does not trigger an output. While diffuse sensors can be affected by the color of the target object,  the use of a background suppression sensor can limit the effect color has on reliability. Foreground suppression sensors work in the same manner as background suppression but will ignore anything in the foreground of the taught distance.

diffuse

Retro-reflective

Retro-reflective sensors also have the emitter and receiver in a single housing but require a reflector or reflective tape be mounted opposite the sensor for it to be triggered by the received light. As an object passes in front of the reflector, the sensor no longer receives the light back, thus triggering an output. Due to the nature of the reflector, these sensors can operate over much larger distances than a diffuse sensor. These sensors come with non-polarized or polarizing filters. The polarizing filter allows for the sensor to detect shiny objects and not see it as a reflector and prevents any stray ambient light from triggering the sensor.

retroreflective

Through-beam

Through-beam sensors have a separate body for the emitter and receiver and are placed opposite each other. The output is triggered once the beam has been broken. Due to the separate emitter and receiver, the sensor can operate at the longest range of the aforementioned types. At these long ranges and depending on the light type used, the emitter and receiver can be troublesome to set up compared to the diffuse and retro-reflective.

throughbeam

Distance

The previous three types of photoelectric sensors give discrete outputs stating whether an object is present or not. With photoelectric distance sensors, you can get a continuous readout on the position of the object being measured. There are two main ways the distance of the object is measured, time of flight, which calculates how long it takes the light to return to the receiver, and triangulation, which uses the angle of the incoming reflected light to determine distance. Triangulation is the more accurate option, but time of flight can be more cost-effective while still providing good accuracy.

Light type and environment

With each operating principle, there are three light types used in photoelectric sensors: red light, laser red light, and infrared. Depending on the environmental conditions and application, certain light types will fare better than others. Red light is the standard light type and can be used in most applications. Laser red light is used for more precise detection as it has a smaller light spot. Infrared is used in lower-visibility environments as it can pass through more dirt and dust than the other two types. Although infrared can work better in these dirtier environments, photoelectric sensors should mainly be used where build-up is less likely. Mounting should also be considered as these sensors are usually not as heavy duty as some proximity switches and break/fail more easily.

As you can see, photoelectric sensors have many different methods of operation and flexibility with light type to help in a wide range of applications. When considering using these sensors, it is important to account for the environmental conditions surrounding the sensor, as well as mounting restrictions/positioning, when choosing which is right for your application.

For more information on photoelectric sensors, visit this page for more information.

Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!