Remote Power Through Inductive Coupling

Inductive couplers are reshaping industrial connectivity by enabling wireless power and data transmission across air gaps. In this blog, I explore the mechanics behind inductive couplers, from magnetic fields facilitating power transfer to bidirectional data communication. I’ll look at applications like end-of-arm tooling, rotary indexing tables, and rapid die change systems to discover how inductive couplers enhance flexibility, durability, and reliability in manufacturing. Additionally, I’ll review the benefits of this technology, poised to revolutionize wireless connectivity in industrial settings.

Inductive couplers: what they are and how they work

Inductive couplers transmit power and data wirelessly without physical connection over an air gap. They are used in various industrial applications such as end-of-arm tooling, rotary indexing tables as well and rapid die change.

Inductive couplers consist of two components: a base (transmitter) and a remote (receiver). The base is connected to a power source and a controller. The remote is attached to a load, such as a hub powering sensors or actuators. Power and data are transferred when the base and remote are in range and aligned on a common axis.

The base generates a magnetic field by passing a current through a coil. The magnetic field induces a voltage in the coil of the remote, which powers the load. The power transfer is based on the principle of electromagnetic induction, which states that a changing magnetic field creates an electric potential difference across a conductor.

The data transfer is also based on electromagnetic induction but with a different frequency and modulation scheme. The base and the remote can communicate bidirectionally by modulating the amplitude, frequency, or phase of their currents. The data signals are superimposed on the power signals and can be decoded by the controller.

Applications that can benefit from inductive coupling

Inductive coupling finds valuable applications in various scenarios, such as:

End-of-arm tooling: Inductive couplers can power and control robotic arms, grippers, or tools, without limiting their mobility or functionality. They can also enable wireless charging of autonomous robots or drones. This technology’s contribution also extends to:

    • Increased flexibility in robot movements. Since there are no physical connections, the robot can move freely without worrying about cable management or connector wear.
    • Improved durability in harsh industrial environments, as inductive couplers are typically sealed and resistant to dust, dirt, and moisture.
    • Fast tool change on robots. Since there’s no need to manually disconnect and reconnect cables, tool changes can be done quickly and efficiently.
    • More reliability than pin-based connector systems, especially for low power sensors. They can create a more stable connection, reducing the risk of signal loss or interruption.

Rotary indexing tables: Machine tool positioning devices used to move parts in programmed, increments so they can be machined or assembled. During operation, the table rotates around a central axis, stops at a predetermined location, remains in that position while an operation is performed, and then rotates to the next position. Powering sensors on a rotary indexing table can be achieved through various methods, but the most efficient way is using inductive coupling which allows for the transfer of power and data without physical contact. it is particularly useful in applications where the rotary indexing table must be able to move in complex ways.

Rapid die change: The quick die change system includes a combination of a die transfer arm, die clamp, die lifter, operation box, and power pump. Through the combination of automated equipment, the product changeover time, production start-up time, or adjustment time of the mold can be minimized. Users can quickly change the mold and clamp the mold, reduce mold change time, produce a variety of small quantities, and reduce inventory and output.

Inductive coupling can be advantageous for die change in industrial automation. Stampers can integrate inductively coupled connector systems to enable rapid die change. This technology can be used for joining die segments, easing the changeout of transfer arms, and communication during transfer functions.

Disadvantages of pin style connectors. Soldered connections can be sensitive to both corrosion and vibration. The filler metal used for the soldering connection will degrade over time and can cause connection failures.

Slip rings are often used in automated assembly lines and packaging machinery, where continuous rotation is required for the system to efficiently operate. They are also used in the food and beverage industry, wind turbines, factory automation, robotics, radars, medical imaging equipment, monitoring equipment, and many others.

Despite their versatility, slip rings come with a complex construction, which includes components such as rings and brushes. These components require regular inspection, cleaning, and maintenance to ensure optimal performance. Failure to maintain slip rings and brushes properly can result in poor electrical contact, increased resistance, and reduced motor efficiency.

The presence of slip rings and brushes introduces additional points of potential wear and tear, requiring inspection, cleaning, and replacement when necessary. This increased maintenance requirement can result in higher downtime and maintenance costs compared to other motor types.

What are the benefits of using inductive couplers?

Inductive couplers offer several advantages that make them a preferred choice in various applications. One key benefit is their flexibility, as they can be easily installed and reconfigured without the need for complex wiring or connectors. Unlike traditional methods, inductive couplers allow for misalignment of up to 15-20 degrees of angular offset or 2-4mm of axial offset while still maintaining functionality.

Another notable advantage is their reliability, as they are immune to wear and tear, corrosion, vibration, or dirt that may affect the performance of standard mechanical contacts. With both the base and remote components fully encapsulated, typically featuring an IP67 protection class, environmental concerns are effectively mitigated.

Additionally, inductive couplers enhance safety by eliminating the risk of electric shocks, sparks, or short circuits commonly associated with exposed conductors or contacts. They also reduce the electromagnetic interference that can affect signal quality or damage electrical components.

Overall, the use of inductive couplers brings about a combination of flexibility, reliability, and safety, making them a valuable choice in various industrial and technological settings.

Boosting Sensor Resilience in Welding With Self-Bunkering Inductive Proximity Sensors

A welding cell will press the limits of any sensor placed in its proximity. Avoiding weld spatter, magnetic fields, extreme temperatures, and impact damage are common challenges in a harsh welding environment. And when sensors fail in these conditions, it can significantly disrupt production uptime. To prevent such disruptions, manufacturers explore more robust sensor mounting solutions, such as proximity mounts, bunker blocks, and other protective devices to shield sensors from these harsh conditions. The self-bunkering inductive proximity sensor plays a key role in alleviating the issues, especially in situations where other accessories are not an option due to limited space.

Weld spatter and magnetic field resistant

In many welding applications, the substantial currents involved can generate heightened magnetic fields, making a welding cell vulnerable to interference. This interference can lead a basic proximity sensor to trigger, even though a part may not be present. The self-bunkering proximity sensor is designed to resist magnetic fields, allowing it to work much closer to the welding surface than a typical inductive sensor. Additionally, the sensor comes with a polytetrafluoroethylene (PTFE) weld coating, allowing for easy removal of the spatter buildup with abrasive tools like a wire brush.

Guard against heavy impacts

Again, the self-bunkering inductive proximity sensor is built for rugged environments. It features a thick, strong one-piece connector body and super thick brass housing to buffer the internal electronics from external impacts and conductive heat. It also includes a deflection ring and a non-brittle, ferrite-free coil carrier to protect the sensor face from direct impacts, disperse shock, and safeguard internal sensing components. The wide-radius corners offer stress relief at the major junction points of the connector body and housing.

Withstand extreme temperatures

With a ceramic PTFE-coated face plate, the sensor can resist up to 2200°F weld spatter burn through from the front. The rest of the body, coated with PTFE and paired with an extra-thick brass housing, provides protection for the sensor up to 300°F. This means that if the sensor is properly maintained, its lifetime should be quite a bit longer than a standard inductive sensor.

Don’t replace, defend

The core components of the proximity sensor can be destroyed if any of the three critical failures – conducted heat, impact, or spatter – occur in combination. To prevent this, the product incorporates a collection of design measures intended to create a virtually impenetrable shield around the internal critical components.

In summary, the self-bunkering inductive proximity sensor is a key solution to combat the challenges sensors face in harsh welding environments that will ultimately disrupt production. Its resistance to magnetic fields and ability to withstand heavy impacts and extreme temperatures, especially in situations with limited space, ensures the protection of the critical sensor components and extended sensor lifespan.

Overcoming Challenges in Metal Detection: The Power of Factor 1 Sensors

Standard inductive proximity sensors are used across the automation industry for metal detection applications and are generally reliable in these operations. But issues arise when switching from steel to other metals like copper, brass, or aluminum. A standard inductive sensor may encounter problems in such scenarios. Due to the reduction factor, the standard inductive sensor detects these different metals at different distances. If you had a sensor mounted and set up to sense a steel material but switched to copper, for example, the copper material might be out of the sensor’s range due to this difference in reduction factor, resulting in a missed reading. Factor 1 sensors were created to eliminate this problem.

Reduction factor

The reduction factor is the root cause of variable distance readings with a standard inductive sensor. But what exactly is it? The standard operating range of an inductive proximity sensor is determined by its response to a one-millimeter-thick square piece of mild steel. Other metals like copper and aluminum deviate from this standard range due to differences in material properties. For example, copper has a reduction factor of around 0.4, so it can only be detected at 0.4 times the standard operating range of an inductive proximity sensor.

We can save for later the details of why this occurs, but the key point here is that different material properties cause different reduction factors, which result in different switching distances. The table below shows these different reduction factors and switching distances. Factor 1 sensors take all these variable reduction factors and equalize them to a standard operating distance. This means that you can read anything from copper to steel at the same range, reducing the possibility of missed readings and eliminating the need for repositioning sensors whenever a material change occurs.

When to use Factor 1 sensors

Factor 1 sensors are well-suited for any process that involves different metals. Whether it is automated welding or a packaging conveyor, the factor 1 sensor will keep the material switching ranges uniform. But why is this such a big advantage?

Think about the time spent having to adjust sensor distances. Not only is the task annoying, it also takes up time. Having factor 1 sensors in place will increase the uptime of these processes and eliminate the need for sensor adjustments.

One last benefit to note about factor 1 sensors is that they are inherently weld field immune. The internal construction of the sensor prevents it from being affected by the electromagnetic field generated during welding. This additional immunity allows the sensor to survive in these welding conditions where a typical sensor might fail if it comes in proximity to the weld field.

In the end, you know your application best, but if any of the above benefits resonate with you, it’s time to start thinking about factor 1.

Choosing the Right Sensor for Measuring Distance

Distance-measuring devices help with positioning, material flow control, and level detection. However, there are several options to consider when it comes to choosing the correct sensor technology to measure distance. Here I’ll cover the three most commonly used types in the industrial automation world today, including photoelectric, ultrasonic, and inductive.

Photoelectric sensors

Photoelectric sensors use a light source, such as a laser or light-emitting diode, to reflect the light off an object’s surface to calculate the distance between the face of the sensor and the object itself. The two basic principles for how the sensor calculates the distances are the time of flight (TOF) and triangulation.

    • Time of flight photoelectric distance measurement sensors derive the distance measurement based on the time it takes the light to travel from the sensor to the object and return. These sensors are used to measure over long distances, generally in the range between 500 millimeters and up to 5 meters, with a resolution between 1 to 5 millimeters, depending on the sensor specifications. Keep in mind that this sensor technology is also used in range-finding equipment with a much greater sensing range than traditional industrial automation sensors.

    • In the triangulation measurement sensor, the sensor housing, light source, and light reflection form a triangle. The distance measurement is based on the light reflection angle within its sensing range with high accuracy and resolution. These sensors have a much smaller distance measurement range that is limited to between 20 and 300 millimeters, depending on the sensor specifications.

The pros of using photoelectric distance measurement sensors are the range, accuracy, repeatability, options, and cost. The main con for using photoelectric sensors for distance measurement is that they are affected by dust and water, so it is not recommended to use them in a dirty environment. The object’s material, surface reflection, and color also affect its performance.

Photoelectric distance measurement sensors are used in part contouring, roll diameter measurement, the position of assemblies, thickness detection, and bin-level detection applications.

Ultrasonic sensors

Ultrasonic distance sensors work on a similar principle as photoelectric distance sensors but instead of emitting light, they emit sound waves that are too high for humans to hear, and they use the time of flight of reflecting sound wave to calculate the distance between the object and the sensor face. They are insensitive to the object’s material, color, and surface finish. They don’t require the object or target to be made of metal like inductive position sensors (see below). They can also detect transparent objects, such as clear bottles or different colored objects, that photoelectric sensors would have trouble with since not enough light would be reflected back to reliably determine the distance of an object. The ultrasonic sensors have a limited sensing range of approximately 8 meters.

A few things to keep in mind that negatively affect the ultrasonic sensor is when the object or target is made of sound-absorbing material, such as foam or fabric, where the object absorbs enough soundwave emitted from the sensor making the output unreliable. Also, the sensing field gets progressively larger the further away it gets from the sensing face, thus making the measurement inaccurate if there are multiple objects in the sensing field of the sensor or if the object has a contoured surface. However, there are sound-focusing attachments that are available to limit the sensing field at longer distances making the measurements more accurate.

Inductive sensors

Inductive distance measurement sensors work on the same principle as inductive proximity sensors, where a metal object penetrating the electromagnetic field will change its characteristics based on the object size, material, and distance away from the sensing face. The change of the electromagnetic field detected by the sensor is converted into a proportional output signal or distance measurement. They have a quick response time, high repeatability, and linearity, and they operate well in harsh environments as they are not affected by dust or water. The downside to using inductive distance sensors is that the object or target must be made of metal. They also have a relatively short measurement range that is limited to approximately 50 millimeters.

Several variables exist to consider when choosing the correct sensor technology for your application solution, such as color, material, finish, size, measurement range, and environment. Any one of these can have a negative effect on the performance or success of your solution, so you must take all of them into account.

Capacitive, the Other Proximity Sensor

What is the first thing that comes to mind if someone says “proximity sensor?” My guess is the inductive sensor, and justly so because it is the most used sensor in automation today. There are other technologies that use the term proximity in describing the sensing mode, including diffuse or proximity photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high-frequency sound waves to detect objects. All these sensors detect objects that are in close proximity to the sensor without making physical contact. One of the most overlooked or forgotten proximity sensors on the market today is the capacitive sensor.

Capacitive sensors are suitable for solving numerous applications. These sensors can be used to detect objects, such as glass, wood, paper, plastic, or ceramic, regardless of material color, texture, or finish. The list goes on and on. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue, and so forth, and they can detect levels of solids like plastic granules, soap powder, sand, and just about anything else. Levels can be detected either directly, when the sensor touches the medium, or indirectly when it senses the medium through a non-metallic container wall.

Capacitive sensors overview

Like any other sensor, there are certain considerations to account for when applying capacitive, multipurpose sensors, including:

1 – Target

    • Capacitive sensors can detect virtually any material.
    • The target material’s dielectric constant determines the reduction factor of the sensor. Metal / Water > Wood > Plastic > Paper.
    • The target size must be equal to or larger than the sensor face.

2 – Sensing distance

    • The rated sensing distance, or what you see in a catalog, is based on a mild steel target that is the same size as the sensor face.
    • The effective sensing distance considers mounting, supply voltage, and temperature. It is adjusted by the integral potentiometer or other means.
    • Additional influences that affect the sensing distance are the sensor housing shape, sensor face size, and the mounting style of the sensor (flush, non-flush).

3 – Environment

    • Temperatures from 160 to 180°F require special considerations. The high-temperature version sensors should be used in applications above this value.
    • Wet or very humid applications can cause false positives if the dielectric strength of the target is low.
    • In most instances, dust or material buildup can be tuned out if the target dielectric is higher than the dust contamination.

4 – Mounting

    • Installing capacitive sensors is very similar to installing inductive sensors. Flush sensors can be installed flush to the surrounding material. The distance between the sensors is two times the diameter of the sensing distance.
    • Non-flush sensors must have a free area around the sensor at least one diameter of the sensor or the sensing distance.

5 – Connector

    • Quick disconnect – M8 or M12.
    • Potted cable.

6 – Sensor

    • The sensor sensing area or face must be smaller or equal to the target material.
    • Maximum sensing distance is measured on metal – reduction factor will influence all sensing distances.
    • Use flush versions to reduce the effects of the surrounding material. Some plastic sensors will have a reduced sensing range when embedded in metal. Use a flush stainless-steel body to get the full sensing range.

These are just a few things to keep in mind when applying capacitive sensors. There is not “a” capacitive sensor application – but there are many which can be solved cost-effectively and reliably with these sensors.

Choosing Between M18 and Flatpack Proxes

Both M18s and flatpacks are inductive or proximity sensors that are widely used in mechanical engineering and industrial automation applications. Generally, they are similar in that they produce an electromagnetic field that reacts to a metal target when it approaches the sensor head. And the coil in both sensors is roughly the same size, so they have the same sensing range – between 5 to 8 millimeters. They also both work well in harsh environments, such as welding.

There are, however, some specific differences between the M18 and flatpack sensors that are worth consideration when setting up production.

M18

One benefit of the M18 sensor is that it’s adjustable. It has threads around it that allow you to adjust it up or down one millimeter every time you turn it 360 degrees. The M18 can take up a lot of space in a fixture, however. It has a standard length of around two inches long and, when you add a connector, it can be a problem when space is an issue.

Flatpack

A flatpack, on the other hand, has a more compact style and format while offering the same sensing range. The mounting of the flatpack provides a fixed distance so it offers less adjustability of the M18, but its small size delivers flexibility in installation and allows use in much tighter fixes and positions.

The flatpack also comes with a ceramic face and a welding cable, especially suited for harsh and demanding applications. You can also get it with a special glass composite protective face, a stainless-steel face, or a steel face with special coatings on it.

Each housing has its place, based on your detection application, of course. But having them both in your portfolio can expand your ability to solve your applications with sensor specificity.

Check out this previous blog for more information on inductive sensors and their unlimited uses in automation.

Inductive Sensors and Their Unlimited Uses in Automation

Inductive sensors (also known as proximity sensors or proxes) are the most commonly used sensors in mechanical engineering and industrial automation. When they were invented in the 1960s, they marked a milestone in the development of control systems. In a nutshell, they generate an electromagnetic field that reacts to metal targets that approach the sensor head. They even work in harsh environments and can solve versatile applications.

There are hardly any industrial machines that work without inductive sensors. So, what can be solved with one, two, three, or more of them?

What can you do with one inductive sensor?

Inductive sensors are often used to detect an end position. This could be in a machine for end-of-travel detection, but also in a hydraulic cylinder or a linear direct drive as an end-of-stroke sensor. In machine control, they detect many positions and trigger other events. Another application is speed monitoring with a tooth wheel.

What can you do with two inductive sensors?

By just adding one more sensor you can get the direction of rotational motion and take the place of a more expensive encoder. In a case where you have a start and end position, this can also be solved with a second inductive sensor.

What can you do with three inductive sensors?

In case of the tooth wheel application, the third sensor can provide a reference signal and the solution turns into a multiturn rotary encoder.

What can I do with four inductive sensors and more?

For multi-point positioning, it may make sense to switch to a measurement solution, which can also be inductive. Beyond that, an array of inductive sensors can solve identification applications: In an array of 2 by 2 sensors, there are already 16 different unique combinations of holes in a hole plate. In an array of 3 by 3, it would be 512 combinations.

Avoid Downtime in Metal Forming With Inductive & Photoelectric Sensors

Industrial sensor technology revolutionized how part placement and object detection are performed in metal forming applications. Inductive proximity sensors came into standard use in the industry in the 1960s as the first non-contact sensor that could detect ferrous and nonferrous metals. Photoelectric sensors detect objects at greater distances. Used together in a stamping environment, these sensors can decrease the possibility of missing material or incorrect placement that can result in a die crash and expensive downtime.

Inductive sensors

In an industrial die press, inductive sensors are placed on the bottom and top of the dies to detect the sheet metal for stamping. The small sensing range of inductive sensors allows operators to confirm that the sheet metal is correctly in place and aligned to ensure that the stamping process creates as little scrap as possible.

In addition, installing barrel-style proximity sensors so that their sensing face is flush with the die structure will confirm the creation of the proper shape. The sensors in place at the correct angles within the die will trigger when the die presses the sheet metal into place. The information these sensors gather within the press effectively make the process visible to operators. Inductive sensors can also detect the direction of scrap material as it is being removed and the movement of finished products.

Photoelectric sensors

Photoelectric sensors in metal forming have two main functions. The first function is part presence, such as confirming that only a single sheet of metal loads into the die, also known as double-blank detection. Doing this requires placing a distance-sensing photoelectric sensor at the entry-way to the die. By measuring the distance to the sheet metal, the sensor can detect the accidental entry of two or more sheets in the press. Running the press with multiple metal sheets can damage the die form and the sensors installed in the die, resulting in expensive downtime while repairing or replacing the damaged parts.

The second typical function of photoelectric sensors verifies the movement of the part out of the press. A photoelectric light grid in place just outside the exit of the press can confirm the movement of material out before the next sheet enters into the press. Additionally, an optical window in place where parts move out will count the parts as they drop into a dunnage bin. These automated verification steps help ensure that stamping processes can move at high speeds with high accuracy.

These examples offer a brief overview of the sensors you mostly commonly find in use in a die press. The exact sensors are specific to the presses and the processes in use by different manufacturers, and the technology the stamping industry uses is constantly changing as it advances. So, as with all industrial automation, selecting the most suitable sensor comes down to the requirements of the individual application.

Non-Contact Inductive Couplers Provide Wiring Advantages, Added Flexibility and Cost Savings Over Industrial Multi-Pin Connectors

Today, engineers are adding more and more sensors to in-die sensing packages in stamping applications. They do so to gain more information and diagnostics from their dies as well as reduce downtime. However, the increased number of sensors also increases the number of electric connections required in the automation system. Previously, the most common technique to accommodate large numbers of sensor in these stamping applications was with large, multi-pin connectors. (Figure 1)

Figure 1
Figure 1: A large multi-pin connector has been traditionally used in the past to add more electronics to a die.

The multi-pin connector approach works in these applications but can create issues, causing unplanned downtime. These problems include:

    1. Increased cost to the system, not only in the hardware itself, but in the wiring labor. Each pin of the connector must be individually wired based on the sensor configuration of each particular die. Depending on the sensor layout of the die, potentially each connector could need to be wired differently internally.
    2. A shorter life span for the multi-pin connector due to the tough stamping environment. The oil and lubrication fluids constantly spraying on the die can deteriorate the connectors plastic housings. Figure 1 shows the housing starting to come apart. When the connector is unplugged, these devices are not rated for IP67 and dirt, oil, and/or other debris can build up inside the connector.
    3. Cable damage during typical die change out. Occasionally, users forget to unplug the connectors before pulling the die out and they tear apart the device. If the connector is unplugged and left hanging off the die, it can be run over by a fork truck. Either way, new connectors are required to replace the damaged ones.
    4. Bent or damaged pins. Being mechanical in nature, the pin and contact points will wear out over time by regular plugging and unplugging of these devices.
    5. A lack of flexibility. If an additional sensor for the die is required, additional wiring is needed. The new sensor input needs to be wired to a free pin in the connector and a spare pin may not be available.
Figure 2
Figure 2: Above is a typical set up using these multi-pin connectors hard-wired to junction boxes.

Inductive couplers (non-contact) are another solution for in-die sensors connecting to an automation system. With inductive couplers, power and data are transferred across an air gap contact free. The system is made up of a base (transmitter) and remote (receiver) units. The base unit is typically mounted to the press itself and the remote unit to the die. As the die is set in place, the remote receives power from the base when aligned and exchanges data over a small air gap.

The remote and base units of an inductive coupler pair are fully encapsulated and typically rated IP67 (use like rated cabling). Because of this high ingress protection rating, the couplers are not affected by coolant, die lubricants, and/or debris in a typical stamping application. Being inherently non-contact, there is no mechanical wear and less unplanned downtime.

When selecting an inductive coupler, there are many considerations, including physical form factors (barrel or block styles) and functionality types (power only, input only, analog, configurable I/O, IO-Link, etc…). IO-Link inductive couplers offer the most flexibility as they allow 32 bytes of bi-direction data and power. With the large data size, there is a lot of room for future expansion of additional sensors.

Adding inductive couplers can be an easy way to save on unexpected downtime due to a bad connector.

fig 3
Figure 3: A typical layout of an IO-Link system using inductive couplers in a stamping application.

Analog Inductive Sensors Enable Easy Double Blank Detection in Stamping

Double sheet detection, also known as double blank detection, is an essential step in stamping quality control processes, as failure to do so can cause costly damage and downtime. Analog inductive sensors can deliver a cost-effective and easy way to add this step to stamping processes.

Most people have experienced on a smaller scale what happens when the office printer accidentally feeds two sheets of paper; the machine jams and the clog must be manually removed. Beyond the annoyance of not getting the printout right away, this typically doesn’t cause any significant issues to the equipment. In the stamping world, two sheets being fed into a machine can severely affect productivity and quality.

When two metal sheets stick together and are fed into a machine together, the additional thickness can damage the stamping dies and other equipment like the robot loaders, which can cause the production line to shut down for repairs. Even if the tool fares better and does not get damaged, the stamped product will likely be defective. In today’s highly competitive and just-in-time market, machine downtime and rejected shipments due to quality can be very costly.

1
Image 1

A simple solution to detect multiple sheets of metal is analog inductive sensing. This kind of sensor offers non-contact sensing with a 0…10V analog output, which can be used to determine when the thickness of the metallic material changes. As the material gets thicker, or as multiple sheets of metal stack on top of one another, the analog output from the sensor varies proportionally. These sensors can be used with ferrous or non-ferrous metals, but the operating range will be reduced for non-ferrous metals. As shown in the graph (Image 1), as the distance with the metallic target changes, the analog output increases from 0 to 10V.

 

2

3

 

The pictures above, shows the technology in action. With a single sheet of aluminum, the output from the sensor is 2.946V, and for two sheets, the output is 5.67V. The user can establish these values as a reference for when there is more than one sheet of metal being fed into the machine and stop the equipment from attempting to process the material before it is damaged. These sensors can be placed perpendicular or inline with the target material and are offered in various form factors so they can be integrated into a wide range of applications.