Industrial Machinery Failure Types and Implications for Maintenance Approaches

Industrial machinery can fail in many different ways and for many different reasons. For critical and/or expensive equipment, it is a major challenge to find a way to detect potential failures before they happen and to take action to prevent or minimize the effects. Closely tied to this is the tradeoff between the cost of detection and the cost of failure. We discussed some of these tradeoffs in the blog “Condition Monitoring & Predictive Maintenance: Cost-Benefit Tradeoffs.”

When assessing how equipment might fail, several industry studies* have identified six primary failure types which may be considered:

    • Type A: Lower probability of failure in early- and mid-life of the asset, with a dramatic increase in probability of failure in late-life. This is typical for mechanical devices, such as engines, fans, compressors, and machines.
    • Type B: Higher initial probability of failure when the asset is new, with a much lower/steady failure probability over the rest of the asset’s life. This is often the profile for electronic devices such as computers, PLCs, etc.
    • Type C: Lower initial probability of failure when the asset is new, with an increase to a steady failure probability in mid- and late-life. These are often devices with high stress work conditions, such as pressure relief valves.
    • Type D: Consistent probability of failure throughout the asset life, similar failure probability in early-, mid- and late-life. This can cover many types of industrial machines, often with stable, proven design and components.
    • Type E: Higher probability of failure in early- and late-life, a lower and constant probability of failure in mid-life (often called a “bathtub curve”). This can be devices that “settle in” after a wear-in period and then experience higher failures at the end of life, such as bearings.
    • Type F: Lower probability of failure when new, with a gradual increase over time and without the steep increase in failure probability at the end of life of Type A. This is often typical where age-based wear is steady and gradual in equipment such as turbine engines and structural components (pressure vessels, beams, etc.).

Age-related and non-age-related failures

These six failure types fall into two categories: age-related and non-age-related failures. The studies show that 15-30% of failures are age-related (Types A, E & F) and 70-85% of failures are non-age-related (Types B, C & D). The age-related failures have a clear correlation between the age of the asset and the likelihood of failure. In these cases, preventative maintenance at regular time-based intervals may be appropriate and cost-effective. The non-age-based failures are more “random,” due to improper design/installation, operator error, quality issues, machine overuse, etc. In these cases, preventative maintenance will likely not prevent failure and may waste time and money on unnecessary maintenance.

Table is based on data from studies conducted by United Airlines (1978), Broberg (1973), U.S. Navy (1993 MSDP) and U.S. Navy (2001 SUBMEPP) and ARC Consulting

The fact that approximately 80% of failures are non-age-related has major implications for manufacturers trying to decide on a maintenance approach. The traditional preventative-maintenance approach is not likely to address these failures and may even cause failures when improperly done. It is therefore important to consider a more proactive approach, such as condition-based monitoring or predictive maintenance, especially for assets that are critical to the process and/or expensive.

Preventative maintenance and regular inspection may be a good approach for assets more likely to experience age-based failures in Types A, E, and F. These include fans, bearings, and structural components – and in many cases, the cost of condition monitoring or predictive maintenance may not be worth the cost. But for critical components or equipment, such as bearings on an expensive milling machine or transfer line, it may be worthwhile to apply condition monitoring or predictive maintenance.

And when the assets are more likely to experience non-age-related failures (Types B, C, and D), the proactive approaches are better. Many industrial machines and industrial control/motion components fall into this category, and condition monitoring or predictive maintenance can significantly reduce preventative maintenance costs and unplanned failures while improving machine uptime and Overall Equipment Effectiveness.

You can use this information to improve your maintenance operations. Start by considering your maintenance approach(es), especially for your most critical assets:

    • Are they more likely to experience age-related failures or non-age-related failures?
    • Should you change your maintenance approach to be more proactive?
    • What components and indicators should you measure?

We’ll discuss ideas on how to assess your equipment for condition monitoring/predictive maintenance and what you might measure in separate blogs.

* Studies conducted by United Airlines (1978), Broberg (1973), U.S. Navy (1993 MSDP) and U.S. Navy (2001 SUBMEPP)

Predictive Maintenance vs. Predictive Analytics, What’s the Difference?

With more and more customers getting onboard with IIoT applications in their plants, a new era of efficiency is lurking around the corner. Automation for maintenance is on the rise thanks to a shortage of qualified maintenance techs coinciding with a desire for more efficient maintenance, reduced downtime, and the inroads IT is making on the plant floor. Predictive Maintenance and Predictive Analytics are part of almost every conversation in manufacturing these days, and often the words are used interchangeably.

This blog is intended to make the clear distinction between these phrases and put into perspective the benefits that maintenance automation brings to the table for plant management and decision-makers, to ensure they can bring to their plants focused innovation and boost efficiencies throughout them.

Before we jump into the meat of the topic, let’s quickly review the earlier stages of the maintenance continuum.

Reactive and Preventative approaches

The Reactive and Preventative approaches are most commonly used in the maintenance continuum. With a Reactive approach, we basically run the machine or line until a failure occurs. This is the most efficient approach with the least downtime while the machine or line runs. Unfortunately, when the machine or line comes to a screeching stop, it presents us with the most costly of downtimes in terms of time wasted and the cost of machine repairs.

The Preventative approach calls for scheduled maintenance on the machine or line to avoid impending machine failures and reduce unplanned downtimes. Unfortunately, the Preventative maintenance strategy does not catch approximately 80% of machine failures. Of course, the Preventative approach is not a complete waste of time and money; regular tune-ups help the operations run smoother compared to the Reactive strategy.

Predictive Maintenance vs. Predictive Analytics

As more companies implement IIoT solutions, data has become exponentially more important to the way we automate machines and processes within a production plant, including maintenance processes. The idea behind Predictive Maintenance (PdM), aka condition-based maintenance, is that by frequently monitoring critical components of the machine, such as motors, pumps, or bearings, we can predict the impending failures of those components over time. Hence, we can prevent the failures by scheduling planned downtime to service machines or components in question. We take action based on predictive conditions or observations. The duration between the monitored condition and the action taken is much shorter here than in the Predictive Analytics approach.

Predictive Analytics, the next higher level on the maintenance continuum, refers to collecting the condition-based data over time, marrying it with expert knowledge of the system, and finally applying machine learning or artificial intelligence to predict the event or failure in the future. This can help avoid the failure altogether. Of course, it depends on the data sets we track, for how long, and how good our expert knowledge systems are.

So, the difference between Predictive Maintenance and Predictive Analytics, among other things, is the time between condition and action. In short, Predictive Maintenance is a stepping-stone to Predictive Analytics. Once in place, the system monitors and learns from the patterns to provide input on improving the system’s longevity and uptime. Predictive Maintenance or Preventative Maintenance does not add value in that respect.

While Preventative Maintenance and Predictive Maintenance promises shorter unplanned downtimes, Predictive Analytics promises avoidance of unplanned downtime and the reduction of planned downtime.

The first step to improving your plant floor OEE is with monitoring the conditions of the critical assets in the factory and collecting data regarding the failures.

Other related Automation Insights blogs:

How IO-Link Sensors With Condition Monitoring Features Work With PLCs

As manufacturers continually look for ways to maximize productivity and eliminate waste, automation sensors are taking on a new role in the plant. Once, sensors were used only to provide detection or measurement data so the PLC could process it and run the machine. Today, sensors with IO-Link measure environmental conditions like temperature, humidity, ambient pressure, vibration, inclination, operating hours, and signal strength. By setting alarm thresholds, it’s possible to program the PLC to use the resulting condition monitoring data to keep machines running smoothly.

Real-time data for real-time response

A sensor with condition monitoring features allows a PLC to use real-time data with the same speed it uses a sensor’s primary process data. This typically requires setting an alarm threshold at the sensor and a response to those alarms at the PLC.

When a vibration threshold is set up on the sensor and vibration occurs, for example, the PLC can alert the machine operator to quickly check the area, or even stop the machine, to look for a product jam, incorrect part, or whatever may be causing the vibration. By reacting to the alarm immediately, workers can reduce product waste and scrap.

Inclination feedback can provide diagnostics in troubleshooting. Suppose a sensor gets bumped and no longer detects its target, for example. The inclination alarm set in the sensor will indicate after a certain degree of movement that the sensor will no longer detect the part. The inclination readout can also help realign the sensor to the correct position.

Detection of other environmental factors, including humidity and higher-than-normal internal temperatures, can also be set, providing feedback on issues such as the unwanted presence of water or the machine running hotter than normal. Knowing these things in real-time can stop the PLC from running, preventing the breakdown of other critical machine components, such as motors and gearboxes.

These alarm bits can come from the sensors individually or combined together inside the sensor. Simple logic, like OR and AND statements, can be set on the sensor in the case of vibration OR inclination OR temperature alarm OR humidity, output a discrete signal to pin 2 of the sensors. Then pin 2 can be fed back through the same sensor cable as a discrete alarm signal to the PLC. A single bit showing when an alarm occurs can alert the operator to look into the alarm condition before running the machine. Otherwise, a simple ladder rung can be added in the PLC to look at a single discrete alarm bit and put the machine into a safe mode if conditions require it.

In a way, the sensor monitors itself for environmental conditions and alerts the PLC when necessary. The PLC does not need to create extra logic to monitor the different variables.

Other critical data points, such as operating hours, boot cycle counters, and current and voltage consumption, can help establish a preventative and predictive maintenance schedule. These data sets are available internally on the sensors and can be read out to help develop maintenance schedules and cut down on surprise downtimes.

Beyond the immediate benefits of the data, it can be analyzed and trended over time to see the best use cases of each. Just as a PLC shouldn’t be monitoring each alarm condition individually, this data must not be gathered in the PLC, as there is typically only a limited amount of memory, and the job of the PLC is to control the machines.

This is where the IT world of high-level supervision of machines and processes comes into play. Part two of my blog will explore how to integrate this sensor data into the IT level for use alongside the PLC.