Inductive Sensors and Their Unlimited Uses in Automation

Inductive sensors (also known as proximity sensors or proxes) are the most commonly used sensors in mechanical engineering and industrial automation. When they were invented in the 1960s, they marked a milestone in the development of control systems. In a nutshell, they generate an electromagnetic field that reacts to metal targets that approach the sensor head. They even work in harsh environments and can solve versatile applications.

There are hardly any industrial machines that work without inductive sensors. So, what can be solved with one, two, three, or more of them?

What can you do with one inductive sensor?

Inductive sensors are often used to detect an end position. This could be in a machine for end-of-travel detection, but also in a hydraulic cylinder or a linear direct drive as an end-of-stroke sensor. In machine control, they detect many positions and trigger other events. Another application is speed monitoring with a tooth wheel.

What can you do with two inductive sensors?

By just adding one more sensor you can get the direction of rotational motion and take the place of a more expensive encoder. In a case where you have a start and end position, this can also be solved with a second inductive sensor.

What can you do with three inductive sensors?

In case of the tooth wheel application, the third sensor can provide a reference signal and the solution turns into a multiturn rotary encoder.

What can I do with four inductive sensors and more?

For multi-point positioning, it may make sense to switch to a measurement solution, which can also be inductive. Beyond that, an array of inductive sensors can solve identification applications: In an array of 2 by 2 sensors, there are already 16 different unique combinations of holes in a hole plate. In an array of 3 by 3, it would be 512 combinations.

Weld Immune vs. Weld Field Immune: What’s the difference? 

In today’s automotive plants and their tier suppliers, the weld cell is known to be one of the most hostile environments for sensors. Weld slag accumulation, elevated ambient temperatures, impacts by moving parts, and strong electromagnetic fields can all degrade sensor performance and cause false triggering. It is widely accepted that sensors will have a limited life span in most plants.

Poor sensor selection does mean higher failure rates which cause welders in all industries increased downtime, unnecessary maintenance, lost profits, and delayed delivery. There are many sensor features designed specifically to withstand these harsh welding environments and the problems that come along with them to combat this.

In the search for a suitable sensor for your welding application, you are sure to come across the terms weld immune and weld field immune. What do these words mean? Are they the same thing? And will they last in my weld cell?

Weld Immune ≠ Weld Field Immune

At first glance, it is easy to understand why someone may confuse these two terms or assume they are one and the same.

Weld field immune is a specific term referring to sensors designed to withstand strong electromagnetic fields. In some welding areas, especially very close to the weld gun, welders can generate strong magnetic fields. When this magnetic field is present, it can cause a standard sensor to perform intermittently, like flickering and false outputs.

Weld field immune sensors have special filtering and robust circuitry that withstand the influence of strong magnetic fields and avoid false triggers. This is also called magnetic field immune since they also perform well in any area with high magnetic noise.

On the other hand, weld immune is a broad term used to describe a sensor designed with any features that increase its performance in a welding application. It could refer to one or multiple sensor features, including:

    • Weld spatter resistant coatings
    • High-temperature resistance
    • Different housing or sensor face materials
    • Magnetic field immunity

A weld field immune sensor might be listed with the numerous weld immune sensors with special coatings and features, but that does not necessarily mean any of those other sensors are immune to weld fields. This is why it is always important to check the individual sensor specifications to ensure it is suitable for your application.

In an application where a sensor is failing due to impact damage or weld slag spatter, a steel face sensor with a weld resistant coating could be a great solution. If this sensor isn’t close to the weld gun and isn’t exposed to any strong magnetic fields, there is really no need for it to be weld field immune. The important features are the steel face and coating that can protect it against impact and weld slag sticking to it. This sensor would be classified as weld immune.

In another application where a sensor near the weld gun side of the welding procedure where MIG welding is performed, this location is subject to arc blow that can create a strong magnetic field at the weld wire tip location. In this situation, having a weld field immune sensor would be important to avoid false triggers that the magnetic field may cause. Additionally, being close to a MIG weld gun, it would also be wise to consider a sensor with other weld immune properties, like a weld slag resistant coating and a thermal barrier, to protect against high heat and weld slag.

Weld field immunity is just one of many features you can select when picking the best sensor for your application. Whether the issue is weld slag accumulation, elevated ambient temperatures, part impact, or strong electromagnetic fields, there are many weld immune solutions to consider. Check the placement and conditions of the sensors you’re using to decide which weld-immune features are needed for each sensor.

Click here for more on choosing the right sensor for your welding application.