Traceability in Manufacturing – More than just RFID and Barcode

Traceability is a term that is commonly used in most plants today. Whether it is being used to describe tracking received and shipped goods, tracking valuable assets down to their exact location, or tracking an item through production as it is being built, traceability is usually associated with only two technologies — RFID and/or barcode. While these two technologies are critical in establishing a framework for traceability within the plant, there are other technologies that can help tell the rest of the story.

Utilizing vision along with a data collection technology adds another dimension to traceability by providing physical evidence in the form of an image. While vision cameras have been widely used in manufacturing for a long time, most cameras operate outside of the traceability system. The vision system and tracking system often operate independently. While they both end up sending data to the same place, that data must be transported and processed separately which causes a major increase in network traffic.

Datamatrixlesen_Platine

Current vision technology allows images to be “stamped” with the information from the barcode or RFID tag. The image becomes redundant traceability by providing visual proof that everything happened correctly in the build process. In addition, instead of sending image files over the network they are sent through a separate channel to a server that contains all the process data from the tag and has the images associated with it. This frees up the production network and provides visual proof that the finished product is what we wanted it to be.

Used separately, the three technologies mentioned above provide actionable data which allows manufacturers to make important decisions.  Used together, they tell a complete story and provide visual evidence of every step along the way. This allows manufacturers to make more informed decisions based on the whole story not just part of it.

Isn’t a bar code just a bar code?

Bar codes are normally read via a red line laser scanner, or a camera with decoding and positioning software.

There are 3 main types of bar codes.

1D (one dimensional), 2D (two dimensional) and a different type of 2D code is QR (Quick response) codes that we use today.

Each code has a little different attribute and how it’s read.

 1D bar codes are the ladder line bar codes you typically see in a grocery store, on merchandise and packaging.

While there are many different types of 1D bar codes and how they decipher a code the appearance is typically like the picture below.

1Dbarcode

 

 

 

 

 

A 2D Data Matrix code is much smaller than a 1D and can hold quite a bit more information. They can actually hold up to 2,335 alphanumeric characters.

There is redundancy built into the code, in case the code is scratched or defaced.

The code below is an example of a 2D Data Matrix code.

2Dbarcode

The code is read by utilizing a camera and decoding / positioning software.

A QR Code can hold more information than a Data Matrix code.

It can decipher numeric, alphanumeric, byte/binary and kanji.

While it was 1st developed for the automotive industry tracking parts during vehicle manufacturing, it is typically linked to a website when the code is scanned with a camera in a cell phone.

An example of the QR Code is pictured below.

QR Code

The code is read by utilizing a camera and decoding / positioning software.

There are various types of vision sensors that can be used to read different types of bar codes. You can learn more on Balluff’s website at www.balluff.us/vision.

Sensor Based Error Proofing – As easy as 1, 2, 3

Error proofing your manufacturing processes can be as easy as 1, 2, 3. You should be able to freely deploy error proofing in all appropriate locations in your plants without concerns regarding costs and long-term support or stability. It all starts by first identifying your trouble spots, then implementing a detection method, and finally establishing a process to handle the discrepancy. Let’s discuss the detection methods using sensors, as well as the process, for handling discrepancies.

By utilizing sensors as opposed to vision systems or other passive approaches, the cost of implementation and maintenance is reduced. With the new generation of low-cost lasers, sensors are now more affordable and easier to implement.  Radio Frequency Identification (RFID) brings new opportunities for handling non-conforming products. By tagging the individual part, assembly, or lot, products can be directed to the appropriate rework or scrap area.

These methods will allow you to implement more error proofing in your manufacturing lines to save thousand of dollars in scrap or rework and avoid the potential for costly containment.

Top 5 questions regarding error proofing…

Continue reading “Sensor Based Error Proofing – As easy as 1, 2, 3”