Is a Photoelectric Sensor Best for Your Label Detection Application?

Label detection is in every industry of manufacturing. Detecting the placement, orientation, color, or size of a label is critical to product quality and it can even be required for safety purposes. Contrary to what some believe, not every label detection application requires an expensive vision system. This article reviews some common applications that can be solved with just a photoelectric sensor.

As with any sensor application, it’s necessary to specifically tailor the systems for individual applications. In label detection, the label properties dictate the necessary sensor for the job. Using the right sensor will ensure accuracy to the manufacturing process by limiting the possibility of errors or misreads when placing or cutting off the label. The chance for mistakes decreases when labels are designed to have markings used as a point of reference for the sensor to recognize, telling the PLC programming that it is time to cut off or place the label. When looking into a label detection application, several photoelectric sensor types are available.

Through-beam fork sensors

A through-beam fork sensor has an emitter and a receiver built into the same housing which provides a consistent light beam that is simple to configure to many applications. For label detection, fork sensors have teach-in buttons to set the target and background so unique markings can trigger the sensor. This helps find an identification marker that can identify where to cut the label. For applications with consistent markings on different labels, the sensor would not need to be retaught if the color of the identification mark and the background are the same. The common use for these sensors is on flexible manufacturing lines because operators can reteach the sensor to recognize a new label with a different style and color in less than 60 seconds.

Contrast sensors

Providing a high level of accuracy to find labels in an assortment of products, contrast sensors can be taught to identify a target on many different material types, providing an advantage when working with three-dimensional objects. They provide background suppression, allowing for applications using transparent objects, such as glass and plastic and work by distinguishing between objects based on their gray values. This means contrast sensors are highly accurate when detecting objects with similar colors.  

Color sensors

Color sensors are a fantastic choice when working with labels with many different colors. A traditional color sensor can be taught to up to 7 different color parameters to distinguish one label type from the others. Manufacturers with multiple production lines that have labels with various colors can use just one color sensor to detect them all. The more advanced IO-Link-capable color sensors provide an abundance of opportunities to configure many different label types. Using color detection software, one color sensor can be taught up to 256 different color parameters. Users can configure each color setting for the label’s colors and the background.

When it comes to selecting the right sensor for your label detection, you have options. You need to consider the specifics of your application and choose the solution that ensures accuracy and quality during the manufacturing process. For more information about the Balluff photoelectric sensors, visit https://www.balluff.com/en-us/products/areas/A0001/groups/G0103/products/F01325?page=1&perPage=10&searchTerm=.

Fork Sensors, the Best Choice for Range, Reliability, Ease of Installation

Photoelectric sensors are a staple within many industries when it comes to automation thanks to their non-contact detection over longer ranges than many other sensing types. Also available in a variety of housing types and protection classes to meet the specific demands of an application, they offer manufacturers many different variants and models. The range of styles can make selecting the perfect photoelectric sensor for your specific application challenging. This post highlights the benefits of through-beam sensors and why fork sensors specifically, are often the ideal sensor for the job.

Through-beam sensors can detect anything, regardless of color, texture or reflectivity. This makes them highly efficient in any application where material or parts need to be detected during the process. They require an emitter and receiver. The emitter sends a light beam toward the receiver. When this light beam is blocked, the sensor will trigger. A common example of this is the sensor system on a garage door that detects obstructions and keeps the door from closing. (The software can also inverse this, so the sensor triggers when the light beam is not obstructed. Read more about these light-on/dark-on modes).

Traditional Through-Beams vs. Fork Sensors

Through-beam photoelectric sensors are simple technology that are non-contact, reliable and can operate over distances up to 100 meters, making them a go-to for many applications. But they aren’t without fault. Because the emitter and receiver are typically in separate housings, the two parts must line up perfectly to work. This alignment takes extra time during assembly and is prone to problems in the future if the emitter or receiver move,  even slightly. Machine vibrations can cause a misalignment.

Fork sensors, also called C slot or U slot sensors, incorporate both the emitter and the receiver into a single body, providing the benefits of a through-beam sensor without the installation issues.

This allows for reduced installation and maintenance time of the sensor in several ways:

    • Mounting a single sensor instead of two
    • Half as many cables needed for networking
    • No touchy alignment needed when installing the sensor
    • No maintenance needed re-aligning the sensors in the future

Photoelectric fork sensors come with sensing windows widths up to 220 mm and a range of light sources to accommodate many application needs. Check them out the next time you are considering a photoelectric sensor and see if they’re the best choice for your application.