Capture vs Control – The Hidden Value of True IIoT Solutions

A few months ago a customer and I met to discuss their Industry 4.0 & IIoT pilot project.  We discussed technology options and ways to collect data from the existing manufacturing process.  Options like reading the data directly from the PLC or setting up an OPC service to request machine data were discussed; however these weren’t preferable as it required modifying the existing PLC code to make the solution effective.  “What I really want is the ability to capture the data from the devices directly and not impact the control of my existing automation equipment.”  Whether his reason was because of machine warranty conflicts or the old adage, “don’t fix what ain’t broke” the general opinion makes sense.

Capture versus Control.

This concept really stuck with me months after our visit that day.  This is really one of the core demands we have from the data generation part of the IIoT equation; how can we get information without negatively impacting our automated production systems?  This is where the convergence of the operational OT and network IT becomes critical.  I’ve now had to build an IT understanding of the fundamentals of how data is transferred in Ethernet; and build an understanding of new-to-me data protocols like JSON (JavaScript Object Notation) and MQTT.  The value of these protocols allows for a direct request from the device-that-has-the-data to the device-that-needs-the-data without a middleman.  These IT based protocols eliminate the need for a control-based data-transport solution!

Blog-WillH_drawing_FINAL

So then truly connected IIoT automation solutions that are “Ready for IIoT” need to support this basic concept of “Capture versus Control.”  We have a strong portfolio of products with Industrial Internet of Things capabilities, check them out at www.balluff.com.

Eliminating Manufacturing Errors Begins with Identifying Trouble Spots

We have all gotten that dreaded phone call or email…the customer received their order, but there was a significant problem:

  • ErrorProofingTagsMissing part
  • Wrong color
  • Leaking seal
  • Improper assembly
  • Too lose…or too tight
  • Incomplete processing, e.g. missing threads
  • Something is damaged
  • Missing fluids or fluids at wrong level
  • …and so on

Assuming that we have reliable suppliers delivering quality parts that meet the required specifications…everything else that can (and often does) go wrong happens inside our own facilities. That means that solving the issues is our responsibility, but it also means that the solutions are completely under our control.

During the initial quality response meetings, at some point the subjects of “better worker training” and “more attention to detail and self-inspection” may come up. They are valid subjects that need to be addressed, but let’s face it: not every manufacturing and assembly problem can be solved by increased worker vigilance and dedication to workmanship. Nor, for that matter, is there the luxury of time or capacity for each worker to spend the extra time needed to ensure zero defects through inspection.

It is often more effective to eliminate errors at their source before they occur, so that further human intervention isn’t required or expected.

Some things to look for when searching for manufacturing trouble spots:

  • Are all fasteners present and properly tightened, in the proper torque sequence
  • Correct machine setup: is the right tool or fixture in place for the product being produced?
  • Manual data entry: does the process rely on human accuracy to input machine or product data?
  • Incorrect part: is it simply too hard to determine small differences by visual means alone?
  • Sequencing error: were the parts correct but came together in the wrong sequence?
  • Mislabeled component: would the operator realize that part is wrong if it was labeled incorrectly in the first place? Sometimes where the error has impact and where it actually occurred are in two different places.
  • Part not seated correctly: is everything is correct, but sometimes the part doesn’t sit properly in the assembly fixture?
  • Critical fluids: is the right fluid installed? Is it filled to the proper level?

Once the trouble spots have been identified, the next step is to implement a detection and/or prevention strategy. More information on the error proofing process is available on the Balluff website at www.balluff.us/errorproofing