Sensor Mounting Made Easy

So, you’ve figured out the best way to detect the product shuttle paddle in your cartoning/packaging machine needs a visible red laser distance sensor. It’s taken some time to validate that this is the right sensor and it will be a reliable, long-term solution.

But then you realize there are some mechanical issues involved with the sensor’s placement and positioning that will require a bit of customization to mount it in the optimal location. Now things may have just become complicated. If you can’t design the additional mounting parts yourself, you’ll have to find someone who can. And then you have to deal with the fabrication side. This all takes time and more effort than just buying the sensor.

Or does it?

Off-the-shelf solutions

It doesn’t have to be that complex. There are possible off-the-self solutions you can consider that will make this critical step of providing a reliable mounting solution – possibly as straightforward as choosing the right sensor. Multiple companies offer sensor mounting systems that accommodate standard sensor brackets. Over the years, companies have continued to develop new mounting brackets for many of their sensor products, from photoelectric sensors and reflectors to proximity sensors to even RFID heads and linear transducers.

So it’s only natural to take that one step further and create a mounting apparatus and system that not only provides a mounting bracket, but also a stable platform that incorporates the device’s mounting bracket with things like stand-off posts, adjustable connection joints, and mounting bases. Such a flexible and extensive system can solve mounting challenges with parts you can purchase, instead of having to fabricate.

Imagine in the example above you need to mount the laser distance sensor off the machine’s base and offset it in a way that doesn’t interfere with the other moving parts of the cartoner. Think of these mounting systems and parts as a kind of Erector Set for sensing devices. You can piece together the required mounting bracket with a set of brace or extension rods and a mounting base that raises the sensor up and off the machine base and even angles it to allow for pointing at the target in the most optimal way.

The following are some mounting solutions for a variety of sensors:

These represent only a small number of different ways to mix and match sensor device brackets and mounting components to find a solid, reliable and off-the-shelf mounting solution for your next mounting challenge. So before considering the customization route, next time take a look at what might already be out there for vendors. It could make your life a lot simpler.

Operational Excellence – How Can We Apply Best Practices Within the Weld Shop?

Reducing manufacturing costs is absolutely a priority within the automotive manufacturing industry. To help reduce costs there has been and continues to be pressure to lower MRO costs on high volume consumables such as inductive proximity sensors.

Traditionally within the MRO community, the strategy has been to drive down the unit cost of components from their suppliers year over year to ensure reduce costs as much as possible. Of course, cost optimization is important and should continue to be, but factors other than unit cost should be considered. Let’s explore some of these as it would apply to inductive proximity sensors in the weld shop.

Due to the aggressive manufacturing environment within weld cell, devices such as inductive proximity sensors are subjected to a variety of hostile factors such as high temperature, impact damage, high EMF (electromagnetic fields) and weld spatter. All of these factors drastically reduce the life of these devices.

There are  manufacturing costs associated with a failed device well beyond that of the unit cost of the device itself. These real costs can be and are reflected in incremental premium costs such as increased downtime (both planned and unplanned),  poor asset allocation, indirect inventory, expedited freight, outsourcing costs, overtime, increased manpower, higher scrap levels, and sorting & rework costs. All of these factors negatively affect a facility’s Overall Equipment Effectiveness (OEE).

Root Cause

In selection of inductive proximity sensors for the weld manufacturing environment there are root cause misconceptions and poor responses to the problem. Responses include: leave the sensor, mounting and cable selection up to the machine builder; bypass the failed sensor and keep running production until the failed device can be replaced; install multiple vending machines in the plant to provide easier access to spare parts (replace sensors often to reduce unplanned downtime);  and the sensors are going to fail anyway so just buy the cheapest device possible.

None of these address the root cause of the failure. They mask the root cause and exacerbate the scheduled and unscheduled downtime or can cause serious part contamination issues down stream, resulting in enormous penalties from their customer.

So, how can we implement a countermeasure to help us drive out these expensive operating costs?

  • Sensor Mounting – Utilize a fixed mounting system that will allow a proximity sensor to slide into perfect mounting position with a positive stop to prevent the device from being over extended and being struck by the work piece. This mounting system should have a weld spatter protective coating to reduce the adherence of weld spatter. This will also provide extra impact protection and a thermal barrier to further assist in protecting the sensing device asset.
  • The Sensor – Utilize a robust fully weld protective coated stainless steel body and face proximity sensor. For applications with the sensor in an “on state” during the weld cycle and/or to detect non-ferrous utilize a proper weld protective coated Factor 1 (F1) device.
  • Cabling – A standard cable will not withstand a weld environment such as MIG welding. Even a cable with protective tubing can have open areas vulnerable for weld berries to land and cause burn through on the cables resulting in a dead short. A proper weld sensor cord set with protective coating on the lock nut, high temp rated and weld resistant overmold to a weld resistant jacketed cable should be used.

By implementing a weld best practice total solution as described above, you will realize significant increases in your facilities OEE contributing to the profitability and sustainability of your organization.

Ask these 3 simple questions:

1) What is the frequency of failure

2) What is the Mean Time To Repair (MTTR)

3) What is the cost per minute of downtime.

Once you have that information you will know with your own metrics  what the problem is costing your facility by day/month/year. You may be surprised to see how much of a financial burden these issues are costing you. Investing in the correct best practice assets will allow you to realize immediate results to boost your company OEE.