Machine Tool Identification with RFID -Automation for Advanced Machining

When most people think of automation in manufacturing the first thing that comes to mind is usually a robot. Without a doubt, robots play an integral part in automating the production process, and let’s face it they are pretty cool. However, there is an often overlooked topic in the automation discussion and that is Automatic Data Collection (ADC), which includes barcode and RFID technology. While it doesn’t carry the “cool factor” quite as well as robotics, RFID has helped automate manufacturing, specifically machining, over the last 30 years.

How is it used?

An RFID tag is placed in the tool holder and stays put for the life of the tool. The tag essentially acts as a mini database that can be read and written to thousands of times.

What type of data is typically written to the tag?

Tool Life, Tool Chain Pocket location, Offset Data, Maintenance Info, etc. Up to 2K of info can be written and read and erased and written again. In addition, this information can be updated on the spot.

What are the benefits of using RFID in Machine Tools?

RFID Improves Quality, Increases Efficiency, and Reduces overall Costs by:

Maximizing Tool and Machine Utilization

  • Precise up-to-date tool life information
  • Accurate transfer of tool offset data
  • Continuous tracking of the tool

Minimizing Human Error

  • Eliminates human data entry
  • Automates transfer of data from presetter to machine
  • Data can be accessed directly on the plant floor as opposed to a database lookup

ToolIDRFID is a tried and true technology that will continue to have a great impact on the machining process. Organizations all over the globe are saving millions every year by utilizing this simple method of collecting and transferring data. Machine tool ID is a no-brainer when quality, efficiency, and productivity matters!

For more information or to learn more visit www.balluff.us.

UHF making a big impact on manufacturing

RFIDUltra-High Frequency (UHF) RFID is quickly becoming the go-to identification system for flexible manufacturing lines around the world. While it was once considered to be a system designed primarily for distribution centers and retail stores, UHF technology has evolved to meet the rigors of the manufacturing environment.

Not long ago I was in a discussion with one of my customers who had been using RFID for almost 25 years. He was caught in a tough spot because he had an application which required reading tags from as little as six inches away to as far as two feet away. The HF system he had could easily meet his needs for the six inch read range, but reading at two feet away limited him to using UHF. When I explained that, his bewildered look indicated to me he was reluctant to consider UHF as a real option. He went on to explain that about ten years prior he conducted tests in his plant with UHF and found a host of limitations with the technology. His main concern was how the operators’ two-way radios interfered with the UHF operating frequency of 902-928MHz. Having heard this from other manufacturing organizations who were early adopters I knew right away that he wasn’t aware of how the technology has evolved over the last decade.

Frequency hopping has pretty much eliminated interference with other radio signals. In addition to overcoming radio interference, being able to read and write to tags which are mounted on or near metal and liquids has become a reality with recent advancements. These improvements have led to more flexible read ranges which are a requirement in today’s flexible manufacturing applications.

In a nutshell, the demands of flexible manufacturing have spurred advancements in the process as well as the supporting technology. As it applies to identification of parts or pallets in the manufacturing process, the flexibility of UHF RFID enables manufacturers to gain visibility in their process and provides actionable data that is used to make complex business decisions.

You can learn more about the technology in Balluff’s white paper, What Makes RFID Systems Industrial Strength? or by visiting our website at www.balluff.us

Die Identification – A Critical Part of the Stamping Operation

DieCrashIt’s one thing to stamp out a bunch of bad parts because the die hasn’t been properly maintained, but it is another to suffer through a crash because the wrong shut height was set. Failure means hours or even days of downtime and hundreds of thousands of dollars in repair expenses. The fact is, both are preventable with a very simple RFID solution.

Let’s face it, stamping presses aren’t the most technologically advanced machines in our industry. With all the multi-axis, CNC driven machines out there nowadays a press can look somewhat archaic. However, they are one of the most widely utilized machines across the globe today and have been for many years. I can’t say how many times I have walked into a press shop and witnessed 30 year old presses in full operation. So while they may be the dinosaurs in the world of machines, their flawless operation is critical.

One sure way to protect this critical process is to incorporate RFID. Simply affixing an RFID tag to the die can inform the operator of the following:

  • Die location
  • Use Data
  • Repair Data
  • Setup Data
  • Shut Height
  • Feed Material
  • Correct Transfers
  • Number of Hits

All this information is recorded to the tag’s memory and can be read with either a handheld or fixed reader. Since the tag can be read and written to, the information on the tag can be updated after every job or periodic maintenance.

Everyone knows that properly maintained tools extend the life of equipment and help ensure quality products are being produced, but recording this data is another story. The safest and most secure method of recording data about a die is RFID. There are no documents to lose, or illegible handwriting to decipher because the RFID tag is secured directly to the die. Incorporating a die protection program is certainly not a major undertaking. On the contrary, recovering from a crash can cause a major strain on time and resources.

Learn more about solutions for the Metal Stamping industry by visiting Balluff’s website.

RFID for Work in Process (WIP) – Empowering people to make complex business decisions.

traceability_1From the concrete of the production floor to the carpet in the executive offices, RFID technology provides actionable data which allows organizations to make complex business decisions. Making decisions based on actual data opposed to “best guess” data…I don’t even need to explain that. The trick is collecting that data and making it available for the organization. That is where RFID comes into play.

Work in Process is one of many applications within a plant in which RFID improves overall process efficiency. It helps to enable flexible manufacturing, tracks the work process, and helps to maintain regulatory compliance. Simply put, RFID technology is responsible for collecting the data, but it is up to the humans to use the data.

What is the data that is being recorded and collected?

  • Build Data: What are we trying to build? (for flexible MFG)
  • Process Data: How well did we build it? (Error Proofing or Poka Yoke)
  • Lineage Data: Where did the parts come from? (Tracking sub-assemblies and parts to their origin)

How does this data benefit the manufacturing organization?

Build Data:  Consider a company who is manufacturing seats for an automobile. The number of options on seats today is mind boggling. A few options include: Heaters, automated controls, weight sensors, specialized foam, specialized covers, etc.  The problem is they all look the same to the human eye. When tagged with an RFID tag all that data is written to the memory in the beginning of the process and then the data is read at every work station along the line to identify exactly what needs to be done based on what the finished product is going to be. In the old days, the operator at each station would have to read through a couple reams of paper to determine what needs to be completed. Now an automatic data transfer informs the operator what needs to be completed.

Process Data: At the same seat manufacturer, let’s say there are twenty stations (processes) that a seat must go through in order to be completed. Now, let’s say there was an error installing the heating mechanism in station three. The seat then proceeds through the remaining seventeen stations getting many other things added to it along the way. Then, prior to shipping, it goes through final inspection and the heater problem is identified. Now, that final seat needs to be either scrapped or needs to go back through the rework line. That’s what used to happen in the old days. Nowadays there are error checks in between each station that quickly identify problems immediately opposed to waiting until the end of the line resulting in lost labor and time. As the seat moves from station three to four the error check occurs and either a go or no-go is written to the tag. If the reader in station four reads a no-go off the tag the operator is notified immediately and the production error can be corrected immediately without having to tear the seat apart to fix the problem. Additionally, the entire production process is written to the tag along the way and at the end of the line the information is uploaded to a database.  The tag can then be erased and written to all over again.

Let’s say the seat manufacturer receives a special order that has to be run ASAP. All twenty seats currently on the line need to be removed to make way for the special order. After the special order is completed it’s now time to put the seats back in their respective stations. RFID takes the guess work out of that process because now they can just read the RFID tag and it will tell them the exact station it belongs in.

Lineage Data:  All those seat variations mean many different components coming from many different suppliers. RFID is used to track those parts back to their origin in case of recall or repetitive part failure. Now instead of bringing the entire assembly back and scrapping the seat they can identify the faulty component, replace it, and hold their suppliers accountable to their quality promise.

Ultimately, from the concrete to the carpet, RFID helps manufacturing organizations make high quality products, eliminate un-planned down time, and improve overall efficiency. By allowing operators and executives to make decisions based on actual data, RFID is helping drive manufacturing organizations to the next level.

For more information on RFID solutions visit balluff.us/rfid.

Back to Basics: The Fundamentals of a Passive RFID System

There has been a lot of talk in the industrial automation about RFID. In past blog posts we’ve discussed topics like RFID ROI and when to use IO-Link RFID. We could talk about things to consider when implementing RFID into your plant or different applications for days. In this entry, though, I’d like to get back to the basics a little bit.

Area of Application for a Passive RFID System:

RFID is used to accurately identify an object on which the tag is placed. In addition to identification, bject-specific information, like maintenance data is contained on the tag.

Typical RFID System
Typical RFID System

How It Works:

Since passive RFID tags contain no battery, the tag is powered up or “woke up” by the RF waves emitted from antenna of the same frequency. Once a tag is located in range it is powered up by the antenna and its memory can be read and transmitted to the processor. The time it takes the reader to extract information from the tag is usually measured in milliseconds.

Three Main Components of a Passive RFID System:


RFID-TagTag
– A combination of a chip and internal coil. The chip is where the data is held in the memory and can contain a few bytes of data or thousands of bytes of data depending on the capacity of the chip.

RFID-AntennaAntenna – Connected to the processor by an external cable or sometimes contained inside the same housing, the antenna transmits the data to and from the tag back through the processor

RFID-Processor Processor – The role of the processor is to organize the data as it is being read or written. The processor is usually connected to a controller, like a PC or PLC, and performs the task issued by the controller.

To learn more about industrial RFID applications and components visit www.balluff.us/rifd.

How to Make Plant-based Assets Smarter

 

traceability…add RFID

Pallets, bins, shipping containers, machine tools, hand tools, calibration equipment, neumatic and hydraulic cylinders, etc, etc, etc can all be given some level of intelligence which would make life easier within the plant. Plant-based assets are truly assets because they make our job easier or they allow us to be more efficient. When workers are efficient they are more productive.

Really it all comes down to the questions that we need answered. Here are a few that I have run into in a plant:
Where are all of my pallets and shipping containers?
How much longer can I use this machine tool before the tolerances are out of range?
Has this gauge been calibrated? when? by whom? what are the parameters?
I need to re-order this part or order spare parts and the manufacturer information has been worn off. What is the serial number, when was this part manufactured, what is the location of this asset within the plant?

Ultimately, if your assets can answer a few questions your life becomes a little less complex. All of the answers are simply written to the RFID tag and when you have a question you can read the information from the tag with an RFID reader, sometimes called an interrogator for obvious reasons. It’s that simple.

For more information on RFID as a solution visit our website at www.balluff.us/rfid

“Team” Spells Success In Traceability

If you’ve ever considered a traceability project, like asset tracking for instance, you’ve probably also done some homework into the different technological ways to implement it, from barcoding to using RFID (radio frequency identification). And possibly, while doing that research, you may have seen some presentations or read some articles or whitepapers that have talked about the “team” of stakeholders required to implement these projects, especially if involving the scale required for a facility, or even multiple facilities. Well if you’re a manager reading this and involved with such an endeavor, I’m writing to tell you, take this stakeholder team thing seriously.

In many respects, there are rational fears in getting a stakeholder team together in the early stages of these projects, like the conceptualization stage for example. These fears include: Blowing the project out of proportion; Creating mission creep; Even derailing the project with the others self-interests. Again, all can be valid and even come true to a certain extent, but the reality is that most, if not all of the time, these same stakeholders will also identify the potential opportunities and pitfalls that will either help build the REAL ROI case, and/or help prevent the unseen wall that will prevent success.

These stakeholders can range from operational management (warehouse to manufacturing, depending on the target), IT, financial, quality, and engineering, just to get the ball rolling. You must always be careful of allowing the project to slip into “decision by committee”, so hold the reins and have the project lead firm in hand. But by bringing their input, you stand to satisfy not only your goal, but likely the shared goals they also have, validating and strengthening the real ROI that will likely exist if traceability is the requirement. You will also likely find that along the way you will bring improvements and efficiencies that will benefit the broader organization as a whole.

Once you’ve established the goal and the real ROI, reinforced by the stakeholder’s inputs, that is the time to bring in the technology pieces to see what best will solve that goal. This is many times were the first mistake can be made. The technology suppliers are brought in too soon and the project becomes technology weighted and a direction assumed before a true understanding of the benefits and goals of the organization are understood. Considering a project manager before bringing in the technology piece is also a great way to be ready when this time comes. When you’re ready for this stage, this will typically involve bringing in the vendors, integrators and so forth. And guess what, I’m certain you’ll find this part so much easier and faster to deal with, and with greater clarity. If you have that clear picture from your team when you bring in your solution providers, you will find the choices and their costs more realistic, and have a better picture of the feasibility of what your organization can implement and support.

Not to kill the thought with a sports analogy, but a team united and pulling for the same goal in the same direction will always win the game, versus each player looking out for just their own goals. So get your team together and enjoy the sweet taste of ROI success all around.

For more information on Traceability visit www.balluff.us/traceability.

RFID ROI – Don’t forget the payback!

traceability_1Just recently, while visiting a customer wanting to implement an RFID asset tracking solution, it occurred to me that ROI (return-on-investment) should always be the ultimate goal for most uses of RFID. What brought this to mind? It was because we were discussing technology before understanding what the ultimate ROI goal was. I’m sure you could say this was failure from a sales perspective, but I’m sure at some point you have also found yourself caught up in the technology seeming so promising and exciting in terms of its benefits, that you lost track of why you were there in the first place. Also, many times, the technology stage is where equipment suppliers and/or integrators are brought in.

As with most projects of this nature, they get started because someone says something like “why don’t we do XXX, it will save us money, time, trouble, loss or get us in compliance” or all of the above and likely more. But this same thought can get lost going through execution. RFID projects are no exception. Many successful RFID implementations show it can bring large benefits in short and long-term ROI not just in asset tracking, but manufacturing, warehousing, supply chain and so on. But the implementor must always keep track of the ROI goal and be willing to share this with their internal stakeholders, supplier and integration partners to be sure everything stays on track and technology does not take over for technologies sake.

Unfortunately the ROI is not always calculated the same for applications. Typically ROI can simply be measured in time period until the investment is paid back or the money saved over a given period of time. The most simplistic way of calculating payback or ROI is: Cost of Project (calculated at the beginning) / Annual Cash Revenues (expected savings) = Payback Period. Unfortunately the rub comes in when calculating the detail in the two factors. This can be because the cost of the project is not totally encompassing and/or revenue does not take into consideration factors like interest costs or variations in production, for example. As this will ultimately become the measure of successful projects, really understanding ROI is critical.

Factors in Annual Cash Revenues are factors the implementer needs to understand and grasp as the reasons for undertaking a project. These factors will typically involve several aspects of their business, including savings from greater efficiency, lower cost in storage or inventory, less scrap, higher quality standards (less failure returns), compliance benefits, etc. In fact, this part is difficult to encompass here in this forum. But Cost of Project has some factors I can point out. In the example I raised in the beginning, the customer needed to not only address the read/write equipment and tags (including handheld’s), but also the cost of installing all the possible variations in tag types used during manufacture, common database/software needed, bringing distributors and field service on board, integration providers costs (internal also), training needs, software licensing, start-up and support cost, and so on. So in a manufacturing line, it starts with the new equipment, but must include the PLC/database programming, pallet modifications, station installation, spare parts, start-up and training for example. In warehousing, it might include new equipment, loss of facility equipment like forklifts or warehouse area, facility modification like electrical for example, ERP and WMS implementation or integration, commissioning and training.

One thing to consider toward understanding these factors before implementing a total enterprise solution, whether in warehousing, supply chain or manufacturing is to consider a pilot or test/trail program to determine as many factors as possible and test the results before committing to the full investment of the complete project.

So in your next project, remember to include your stakeholders and partners in your end goals, try to encompass all the factors and don’t forget the payback!

To learn more about RFID visit us at www.balluff.us/rfid.

When to use IO-Link RFID

IO-Link logoAt this point it is pretty clear that RFID is a fairly simple identification solution that involves a tag, antenna, and processor. The tag holds the information that is critical to the application. That information could be a very brief identifying number, sometimes called a license plate, and usually consists of 4 to 12 Bytes of data. Or, the application may require the tag to hold all the information about the product being manufactured such as build data, process data, or lineage data. In this case, there are tags with up to 128 Kilobytes of available storage. The scenarios above help to answer the question: “when do I use IO-Link RFID?”

Simply put, IO-Link makes life on the manufacturing floor much easier. It eliminates the mess in the cabinet, it is plug and play, it allows connection to any major controller, etc. etc. etc. So, why not just do away with everything not IO-Link and call it a day? For RFID there is 1 major question that needs to be answered to determine whether or not IO-Link is the right solution: How much data needs to be read from the tag?

IO-link specializes in transferring smaller amounts of data. When required to transfer large amounts the speed is greatly reduced. Here is a very simple way to look at it: IO-Link RFID comes in two different versions- 10Bytes or 32Bytes. The 10 Bytes or 32 Bytes refer to the size of the buffer or container that transfers the data. Imagine this as two semi-trucks carrying a load in a trailer (buffer). Of course, the 32 Byte trailer can carry a larger load (Data) than the 10Byte trailer. Therefore, we can conclude that the 10Byte trailer has to make more trips to carry larger amounts of data. More trips take more time therefore slowing down the process. If there are only 8Bytes of data that need to be read from the tag then the 10Byte version is fine, but if there are 28 bytes then it makes sense to us the 32 Byte version. However, as mentioned above there are applications where the tag may hold up to 8KB, 32KB, or even 128KB of data and IO-Link should not be considered. As a general rule IO-link should not be used to read anything over 96 Bytes due to speed being greatly reduced.

Need For Speed?

As a rule of thumb it takes about .2 seconds for IO-Link RFID readers to read 16Bytes of data and about .5 seconds to read 96Bytes. Reading anything above 96Bytes increases the read time dramatically. As a comparison, the latest and greatest Balluff RFID processor, the BIS V can read 256Bytes of data in about .2 seconds.

Ultimately, the amount of data that needs to be read from the tag and the time required to read that data should be the deciding factors of whether or not IO-Link RFID is right for the job or not.

To learn more about IO-Link visit www.balluff.us

Customization of RFID tag holders and mounting accessories

Does your RFID application require a customized tag holder? What about special brackets for read/write heads and processors? Don’t have the bandwidth to design the mounting hardware required for your unique application? The Balluff Customizing Group can help! If you are implementing the BIS C, BIS L, BIS M or BIS U RFID systems we will make sure you get the performance your application demands.

For several years the Balluff Customizing Group has been working directly with engineers and maintenance personal to provide design and development services for RFID mechanical accessories. The process is streamlined and very straight forward. Please contact Balluff’s Technical Support Professionals to discuss your RFID application.

Here are a few recent examples of RFID projects in the Customizing Group:

1) RFID Pistol Grip Read/Write Head for BIS M data carriers. The modular design can be used with M12, M18 and M30 tubular read/write heads for logistics tracking of incoming and outgoing shipments.

PistolGrip

2) Keyfob with embedded BIS C data carrier. Individual access codes are programmed to the tags allowing only authorized personnel to enter restricted areas.

Keyfob Keyfob2

3) BIS M read/write data carriers embedded in stainless steel NPT plug for Production Tracking.

DataCarrier