How Lower-Priced Cables Can Cost More and Cause Downtime

Cable selection is an important step when it comes to creating a system to yield the most uptime. Sensors tell a machine when to start and stop or begin the next process. The time to replace and rewire the cable are costly, but small in comparison to the costs associated with the unplanned downtime a failed cable can cause. That is why it is so important to make sure you are selecting the right cable for the job.

There are three cable jacket materials that are the most commonly used: polyvinyl chloride (PVC), polyurethane (PUR), and thermoplastic elastomer (TPE). Each material has its own strengths and weaknesses, allowing them to work better in certain applications than others. When selecting cables, you must consider all factors and conditions such as the temperature rating, whether the cable will have contact with any chemicals, how much will the cable be moving, will it encounter weld spatter, vibrations, etc. Once you have this information you can start to look for what cable will work best for you.

Polyvinyl Chloride (PVC)
PVC is the most general cable jacket. It usually has the lowest price, it’s durable and offers a decent temperature range. This is the cable jacket you will see in most standard automation applications, but it isn’t built for harsher environment conditions. PVC does not perform well with weld spatter and can’t handle high heat; it also does not have the best chemical resistance compared to other cable material options.

Polyurethane (PUR)
The PUR jacket is a step up from PVC in most areas. It provides a higher abrasion resistance and better chemical resistance but has a lower temperature range. PUR jackets are mostly used in areas with lots of oils and chemicals or in a cable carrier due to its higher abrasion rating.

Thermoplastic Elastomer (TPE)
TPE jacketed cables deliver a higher temperature rating, are more flexible, offer great chemical resistance, and can resist weld spatter. These cables work in weld cells, high-heat applications, cable carriers, and much more. Because of the higher performance, TPE jacketed cables tend to have a higher price point than PVC and PUR but will last longer and can be used effectively in a variety of environments.

There are many other cable jacket options available that are more application specific than the three mentioned above. Cables with silicone or FEP jackets will have higher temperature ranges than even TPE and can more effectively resist weld spatter. Steel-jacketed cables provide great protection from abrasion and constant vehicle traffic or any falling objects that could cut through a standard jacket. There are also TPE-V cables that are made for the Food and Beverage industry that have all the necessary certifications and can undergo many washdown cycles.

A key to reducing downtime and MRO costs is selecting the right cable for the application. Choosing a lower-priced cable can costs your more in the long run. Using a PVC cable in a weld cell will cost you much more in replacements costs and downtime than would be spent on using a slightly more expensive silicone cable designed to last 4 times longer in that environment. Don’t be blinded by initial costs; instead, focus on the needs of your application and you will see the benefits.