Tackle Quality Issues and Improve OEE in Vision Systems for Packaging

Packaging industries must operate with the highest standards of quality and productivity. Overall Equipment Effectiveness (OEE) is a scoring system widely used to track production processes in packaging. An OEE score is calculated using data specifying quality (percent of good parts), performance (performance of nominal speed) and equipment availability (percent of planned uptime).

Quality issues can directly impact the customer, so it is essential to have processes in place to ensure the product is safe to use and appropriately labeled before it ships out. Additionally, defects to the packaging like dents, scratches and inadequate labeling can affect customer confidence in a product and their willingness to buy it at the store. Issues with quality can lead to unplanned downtime, waste and loss of productivity, affecting all three metrics of the OEE score.

1.png

Traditionally, visual inspections and packaging line audits have been used to monitor quality, however, this labor can be challenging in high volume applications. Sensing solutions can be used to partly automate the process, but complex demands, including multiple package formats and product formulas in the same line, require the flexibility that machine vision offers. Machine vision is also a vital component in adding traceability down to the unit in case a quality defect or product recall does occur.

2.JPG

Vision systems can increase productivity in a packaging line by reducing the amount of planned and unplanned downtime for manual quality inspection. Vision can be reliably used to detect quality defects as soon as they happen. With this information, a company can make educated improvements to the equipment to improve repeatability and OEE and ensure that no defective product reaches the customers’ hands.

Some vision applications for quality assurance in packaging include:

  • Label inspection (presence, integrity, print quality, OCV/OCR)
    • Check that a label is in place, lined up correctly and free of scratches and tears. Ensure that any printed graphics, codes and text are legible and printed with the expected quality. Use a combination of OCR (Optical Character Recognition) to read a lot number, expiration date or product information, and then OCV (Optical Character Verification) to ensure legibility.
  • Primary and secondary packaging inspection for dents and damage
    Inspect bottles, cans and boxes to make sure that their geometry has not been altered during the manufacturing process. For example, check that a bottle rim is circular and has not been crushed so that the bottle cap can be put on after filling with product.
  • Safety seal/cap presence and position verification
    Verifying that a cap and/or seal has been placed correctly on a bottle, and/or that the container being used is the correct one for the formula / product being manufactured.
  • Product position verification in packages with multiple items
    In packages of solids, making sure they have been filled adequately and in the correct sequence. In pharmaceutical industries, this can be used to check that blister packs have a pill in each space, and in food industries to ensure that the correct food item is placed in each space of the package.
  • Certification of proper liquid level in containers
    For applications in which it can’t be done reliably with traditional sensing technologies, vision systems can be used to ensure that a bottle has been filled to its nominal volume.

The flexibility of vision systems allows for addressing these complex applications and many more with a well-designed vision solution.

For more information on Balluff vision solutions and applications, visit www.balluff.com.

Eliminating Manufacturing Errors Begins with Identifying Trouble Spots

We have all gotten that dreaded phone call or email…the customer received their order, but there was a significant problem:

  • ErrorProofingTagsMissing part
  • Wrong color
  • Leaking seal
  • Improper assembly
  • Too lose…or too tight
  • Incomplete processing, e.g. missing threads
  • Something is damaged
  • Missing fluids or fluids at wrong level
  • …and so on

Assuming that we have reliable suppliers delivering quality parts that meet the required specifications…everything else that can (and often does) go wrong happens inside our own facilities. That means that solving the issues is our responsibility, but it also means that the solutions are completely under our control.

During the initial quality response meetings, at some point the subjects of “better worker training” and “more attention to detail and self-inspection” may come up. They are valid subjects that need to be addressed, but let’s face it: not every manufacturing and assembly problem can be solved by increased worker vigilance and dedication to workmanship. Nor, for that matter, is there the luxury of time or capacity for each worker to spend the extra time needed to ensure zero defects through inspection.

It is often more effective to eliminate errors at their source before they occur, so that further human intervention isn’t required or expected.

Some things to look for when searching for manufacturing trouble spots:

  • Are all fasteners present and properly tightened, in the proper torque sequence
  • Correct machine setup: is the right tool or fixture in place for the product being produced?
  • Manual data entry: does the process rely on human accuracy to input machine or product data?
  • Incorrect part: is it simply too hard to determine small differences by visual means alone?
  • Sequencing error: were the parts correct but came together in the wrong sequence?
  • Mislabeled component: would the operator realize that part is wrong if it was labeled incorrectly in the first place? Sometimes where the error has impact and where it actually occurred are in two different places.
  • Part not seated correctly: is everything is correct, but sometimes the part doesn’t sit properly in the assembly fixture?
  • Critical fluids: is the right fluid installed? Is it filled to the proper level?

Once the trouble spots have been identified, the next step is to implement a detection and/or prevention strategy. More information on the error proofing process is available on the Balluff website at www.balluff.us/errorproofing