The 5 Most Common Types of Fixed Industrial Robots

The International Federation of Robotics (IFR) defines five types of fixed industrial robots: Cartesian/Gantry, SCARA, Articulated, Parallel/Delta and Cylindrical (mobile robots are not included in the “fixed” robot category). These types are generally classified by their mechanical structure, which dictates the ways they can move.

Based on the current market situation and trends, we have modified this list by removing Cylindrical robots and adding Power & Force Limited Collaborative robots. Cylindrical robots have a small, declining share of the market and some industry analysts predict that they will be completely replaced by SCARA robots, which can cover similar applications at higher speed and performance. On the other hand, use of collaborative robots has grown rapidly since their first commercial sale by Universal Robots in 2008. This is why collaborative robots are on our list and cylindrical/spherical robots are not.

Therefore, our list of the top five industrial robot types includes:

    • Articulated
    • Cartesian/Gantry
    • Parallel/Delta
    • SCARA
    • Power & Force Limited Collaborative robots

These five common types of robots have emerged to address different applications, though there is now some overlap in the applications they serve. And range of industries where they are used is now very wide. The IFR’s 2021 report ranks electronics/electrical, automotive, metal & machinery, plastic and chemical products and food as the industries most commonly using fixed industrial robots. And the top applications identified in the report are material/parts handling and machine loading/unloading, welding, assembling, cleanrooms, dispensing/painting and processing/machining.

Articulated robots

Articulated robots most closely resemble a human arm and have multiple rotary joints–the most common versions have six axes. These can be large, powerful robots, capable of moving heavy loads precisely at moderate speeds. Smaller versions are available for precise movement of lighter loads. These robots have the largest market share (≈60%) and are growing between 5–10% per year.

Articulated robots are used across many industries and applications. Automotive has the biggest user base, but they are also used in other industries such as packaging, metalworking, plastics and electronics. Applications include material & parts handling (including machine loading & unloading, picking & placing and palletizing), assembling (ranging from small to large parts), welding, painting, and processing (machining, grinding, polishing).

SCARA robots

A SCARA robot is a “Selective Compliance Assembly Robot Arm,” also known as a “Selective Compliance Articulated Robot Arm.” They are compliant in the X-Y direction but rigid in the Z direction. These robots are fairly common, with around 15% market share and a 5-10% per year growth rate.

SCARA robots are most often applied in the Life Sciences, Semiconductor and Electronics industries. They are used in applications requiring high speed and high accuracy such as assembling, handling or picking & placing of lightweight parts, but also in 3D printing and dispensing.

Cartesian/Gantry robots

Cartesian robots, also known as gantry or linear robots, move along multiple linear axes. Since these axes are very rigid, they can precisely move heavy payloads, though this also means they require a lot of space. They have about 15% market share and a 5-10% per year growth rate.

Cartesian robots are often used in handling, loading/unloading, sorting & storing and picking & placing applications, but also in welding, assembling and machining. Industries using these robots include automotive, packaging, food & beverage, aerospace, heavy engineering and semiconductor.

Delta/Parallel robots

Delta robots (also known as parallel robots) are lightweight, high-speed robots, usually for fast handling of small and lightweight products or parts. They have a unique configuration with three or four lightweight arms arranged in parallelograms. These robots have 5% market share and a 3–5% growth rate.

They are often used in food or small part handling and/or packaging. Typical applications are assembling, picking & placing and packaging. Industries include food & beverage, cosmetics, packaging, electronics/ semiconductor, consumer goods, pharmaceutical and medical.

Power & Force Limiting Collaborative robots

We add the term “Power & Force Limiting” to our Collaborative robot category because the standards actually define four collaborative robot application modes, and we want to focus on this, the most well-known mode. Click here to read a blog on the different collaborative modes. Power & Force Limiting robots include models from Universal Robots, the FANUC CR green robots and the YuMi from ABB. Collaborative robots have become popular due to their ease of use, flexibility and “built-in” safety and ability to be used in close proximity to humans. They are most often an articulated robot with special features to limit power and force exerted by the axes to allow close, safe operation near humans or other machines. Larger, faster and stronger robots can also be used in collaborative applications with the addition of safety sensors and special programming.

Power & Force Limiting Collaborative robots have about 5% market share and sales are growing rapidly at 20%+ per year. They are a big success with small and mid-size enterprises, but also with more traditional robot users in a very broad range of industries including automotive and electronics. Typical applications include machine loading/unloading, assembling, handling, dispensing, picking & placing, palletizing, and welding.

Summary­

The robot market is one of the most rapidly growing segments of the industrial automation industry. The need for more automation and robots is driven by factors such as supply chain issues, changing workforce, cost pressures, digitalization and mass customization (highly flexible manufacturing). A broad range of robot types, capabilities and price points have emerged to address these factors and satisfy the needs of applications and industries ranging from automotive to food & beverage to life sciences.

Note: Market share and growth rate estimates in this blog are based on public data published by the International Federation of Robotics, Loup Ventures, NIST and Interact Analysis.

Picking Solutions: How Complex Must Your System Be?

Bin-picking, random picking, pick and place, pick and drop, palletization, depalletization—these are all part of the same project. You want a fully automated process that grabs the desired sample from one position and moves it somewhere else. Before you choose the right solution for your project, you should think about how the objects are arranged. There are three picking solutions: structured, semi-structured, and random.

As you can imagine, the basic differences between these solutions are in their complexity and their approach. The distribution and arrangement of the samples to be picked will set the requirements for a solution. Let’s have a look at the options:

Structured picking

From a technical point of view, this is the easiest type of picking application. Samples are well organized and very often in a single layer. Arranging the pieces in a highly organized way requires high-level preparation of the samples and more storage space to hold the pieces individually. Because the samples are in a single layer or are layered at a defined height, a traditional 2-dimensional camera is more than sufficient. There are even cases where the vision system isn’t necessary at all and can be replaced by a smart sensor or another type of sensor. Typical robot systems use SCARA or Delta models, which ensure maximum speed and a short cycle time.

Semi-structured picking

Greater flexibility in robotization is necessary since semi-structured bin picking requires some predictability in sample placement. A six-axis robot is used in most cases, and the demands on its grippers are more complex. However, it depends on the gripping requirements of the samples themselves. It is rarely sufficient to use a classic 2D area scan camera, and a 3D camera is required instead. Many picking applications also require a vision inspection step, which burdens the system and slows down the entire cycle time.

Random picking

Samples are randomly loaded in a carrier or pallet. On the one hand, this requires minimal preparation of samples for picking, but on the other hand, it significantly increases the demands on the process that will make a 3D vision system a requirement. You need to consider that there are very often collisions between selected samples. This is a factor not only when looking for the right gripper but also for the approach of the whole picking process.

Compared to structured picking, the cycle time is extended due to scanning evaluation, robot trajectory, and mounting accuracy. Some applications require the deployment of two picking stations to meet the required cycle time. It is often necessary to limit the gripping points used by the robot, which increases the demands on 3D image quality, grippers, and robot track guidance planning and can also require an intermediate step to place the same in the exact position needed for gripping.

In the end, the complexity of the picking solution is set primarily by the way the samples are arranged. The less structured their arrangement, the more complicated the system must be to meet the project’s demands. By considering how samples are organized before they are picked, as well as the picking process, you can design an overall process that meets your requirements the best.