Know Your RFID Frequency Basics

In 2008, I purchased my first toll road RFID transponder, letting me drive through and pay my toll without stopping at a booth. This was my first real-life exposure to RFID, and it was magical. Back then, all I knew was that RFID stood for “radio frequency identification” and that it exchanged data between a transmitter and receiver using radio waves. That’s enough for a highway driver, but you’ll need more information to use RFID in an industrial automation setting. So here are some basics on what makes up an RFID system and the uses of different radio frequencies.

At a minimum, an RFID system comprises a tag, an antenna, and a processor. Tags, also known as data carriers, can be active or passive. Active tags have a built-in power source, and passive tags are powered by the electromagnetic field emitted by the antenna and are dormant otherwise. Active tags have a much longer range than passive tags. But passive tags are most commonly used in industrial RFID applications due to lower component costs and no maintenance requirements.

Low frequency (LF), high frequency (HF), ultra-high frequency (UHF)

The next big topic is the different frequency ranges used by RFID: low frequency (LF), high frequency (HF), and ultra-high frequency (UHF). What do they mean? LF systems operate at a frequency range of 125…135 kHz, HF systems operate at 13.56 MHz, and UHF systems operate at a frequency range of 840…960 MHz. This tells you that the systems are not compatible with each other and that you must choose the tag, antenna, and processor unit from a single system for it to work properly. This also means that the LF, HF, and UHF systems will not interfere with each other, so you can install different types of RFID systems in a plant without running a risk of interference or crosstalk issues between them or any other radio communications technology.

 

Choosing the correct system frequency?

How do you choose the correct system frequency? The main difference between LF/HF systems and UHF systems is the coupling between the tags and the antenna/processor. LF and HF RFID systems use inductive coupling, where an inductive coil on the antenna head is energized to generate an inductive field. When a tag is present in that inductive field, it will be energized and begin communications back and forth. Using the specifications of the tag and the antenna/processor, it is easy to determine the read/write range or the air gap between the tag and the antenna head.

The downside of using LF/HF RFID technology based on inductive coupling is that the read/write range is relatively short, and it’s dependent on the physical size of the coils in the antenna head and the tag. The bigger the antenna and tag combination, the greater the read/write distance or the air gap between the antenna and the tag. The best LF and HF RFID uses are in close-range part tracking and production control where you need to read/write data to a single tag at a time.

UHF RFID systems use electromagnetic wave coupling to transmit power and data over radio waves between the antenna and the tag. The Federal Communications Commission strictly regulates the power level and frequency range of the radio waves, and there are different frequency range specifications depending on the country or region where the UHF RFID system is being used. In the United States, the frequency is limited to a range between 902 and 928MHz. Europe, China, and Japan have different operating range specifications based on their regulations, so you must select the correct frequency range based on the system’s location.

Using radio waves enables UHF RFID systems to achieve a much greater read/write range than inductive coupling-based RFID systems. UHF RFID read/write distance range varies based on transmission power, environmental interference, and the size of the UHF RFID tag, but can be as large as 6 meters or 20 feet. Environmental interferences such as metal structures or liquids, including human bodies, can deflect or absorb radio waves and significantly impact the performance and reliability of a UHF RFID system. UHF RFID systems are great at detecting multiple tags at greater distances, making them well suited for traceability and intralogistics applications. They are not well suited for single tag detection applications, especially if surrounded by metal structures.

Because of the impact an environment has on UHF signals, it is advisable to conduct a full feasibility study by the vendor of the UHF RFID system before the system solution is purchased to ensure that the system will meet the application requirements. This includes bringing in the equipment needed, such as tags, antennas, processors, and mounting brackets to the point of use to ensure reliable transmission of data between the tag and the antenna and testing the system performance in normal working conditions. Performing a feasibility study reduces the risk of the system not meeting the customer’s expectations or application requirements.

Selecting an industrial RFID system

There are other factors to consider when selecting an industrial RFID system, but this summary is a good place to start:

    • Most industrial RFID applications use passive RFID tags due to their lower component costs and no battery replacement needs.
    • For applications requiring short distance and single tag detection, LF or HF RFID systems are recommended.
    • For applications where long-distance and multi-tag detection is needed, UHF RFID systems are recommended.
    • If you are considering UHF, a feasibility study is highly recommended to ensure that the UHF RFID system will perform as intended and meet your requirements.

Click here to browse our library of Automation Insights blogs related to RFID.

UHF RFID Versus UHF RTLS

Many companies new to UHF (Ultra High Frequency) RFID (Radio Frequency Identification) confuse it with UHF RTLS (Real Time Location Systems). While both indeed do use UHF RFID, they differ substantially in what they can actually do for you in your business.

Many companies new to UHF (Ultra High Frequency) RFID (Radio Frequency Identification) confuse it with UHF RTLS (Real Time Location Systems). While both indeed do use UHF RFID, they differ substantially in what they can actually do for you in your business.
UHF RFID

Standard UHF RFID systems can see multiple tags on equipment and products up to several meters away, if set up properly. With emphasis on “set up properly.” While UHF RFID works quite well, its unique characteristics require testing in the environment where it will be used to ensure success.

UHF RFID has several purposes:

    • To see if an item has passed a certain point, commonly known as a choke point. Examples of this are items being loaded on or off a trailer at a shipping door or items passing from one area to another in a plant.
    • To verify if something is within a certain area when using a scanning device, such as a handheld reader. If one is scanning shelves of parts or equipment, it will help locate those items.
    • To track usage of equipment in MIS systems.
    • The tags can also have data written to them if needed.

The big thing that UHF RFID cannot do is effectively track the exact location of something at any given time in a cost-effective manner. Generally, UHF RFID uses what are called passive tags for the antennas to read. These tags have no battery and get energized from the antenna signal. If you placed enough antennas all over a facility and enough of these tags, then you could possibly locate something within a certain proximity, but not exactly, and this is hardly cost effective.

UHF Real Time Location Systems (RTLSs)

RTLS, on the other hand, are specifically designed to pinpoint the location of anything with a tag or transponder on it. In fact, RTLS refers to any system that can accurately determine an item or person’s location. An important aspect of RTLS is how frequently assets must be tracked. This data can be used in different ways depending on the application. For example, some RTLS applications only need timestamps when an asset passes through an area, while others require much higher visibility, requiring constant updating of time data.

An ideal RTLS can accurately locate, track, and manage assets, inventory, or people, and help companies make knowledgeable decisions based on collected location data.

Like regular UHF RFID, RTLS can use passive or active tags (tags with batteries), but they use triangulation of multiple antennas to determine the location of an object or person. The strength of the signal at each antenna, combined with the software attached to the antennas, allows the identification of the location of an object or person within less than 1 meter.

The system you choose depends on the needs at your location. They both work quite well when implemented properly by trained professionals.

Also, due to the inherent properties of ultra-high frequencies used in UHF RFID technology and RTLS, you should perform a feasibility study that actually tests the system in the real world environment of the plant prior to implementing these systems in any application.

Passive RFID Still the Way To Go For Work In Process (WIP)

With the rapid evolution of manufacturing technology it’s pretty tough to keep up with the latest and greatest products designed to help automate the manufacturing process. The big “buzz” surrounding RFID about a decade or so ago was Wal-Mart declaring that their top one hundred vendors would be required to tag every single item with an RFID tag. Well, that never came to fruition. Around the same time there was a lot of talk about active RFID systems as a new technology for work in process. Well, that didn’t ever quite materialize either.

While the active systems certainly have made an impact on yard and container management applications, passive RFID still rules the roost in WIP. In essence, the main difference between passive and active RFID is active tags require a battery which helps tagsto yield a much larger read range. One can imagine the benefits of an extremely long read range in a shipping yard, but on a production line the engineers are just fine with mounting the read head within a few inches of the work pieces. Eighty to ninety percent of the new WIP applications that we deal with still require High Frequency (HF) technology.   The other ten to twenty percent are using Ultra-High Frequency (UHF) which is still passive technology, just a longer read range. This is usually the case where the actual item being built is very large and it is very difficult to place a HF reader within inches of the work piece.

Ultimately, using active RFID for work in process is similar to using a sledge hammer to put a nail in a wall. It is simply overkill. So, while automation technology is on a course of change, it is clear that some of the “old faithful” equipment is still adequately addressing the needs on the production line.

To learn more about active vs. passive RFID tags, click here.