Using RFID Technology for Rapid Changeover

In today’s tight economy, marked by high inflation and supply chain issues, the need to enhance product flexibility has become increasingly important. Most manufacturing lines these days are set up to run multiple work orders of the same product type based on specific requirements. The goods produced at the manufacturer line are still the same, but the package size can change. The raw materials that start the process might be the same, but other component parts and tools on the machine that help with the different packaging sizes must be replaced. The process of converting one product line or machine to another is known as changeover. This blog explores how Radio Frequency Identification (RFID) technology can revolutionize changeover by eliminating manual verification and adjustments.

Challenges of changeovers

Changeover can involve swapping out parts, tools, or molds specific to each product along with setting up specific parameters on the PLC controller for that product run. This requires personnel to make sure all the required parts are exchanged out correctly and the new settings are correctly entered into the controller. Afterward, it is necessary to verify that everything is correct before full production starts again with the new work order. Any incorrect setting part replacement can result in wasted product and troubleshooting. During this changeover period, no products are being produced since the machine/line is being set up for the new work order. Therefore, it makes sense to try and reduce this time as much as possible to maximize production efficiency and reduce produce waste.

Role of RFID technology in streamlining changeovers

Using Radio Frequency Identification (RFID) technology can significantly help changeover in the manufacturing process by preventing errors, and ensuring correct component loading and accurate parameter settings. RFID tags can be attached to different parts requiring replacement for various packaging sizes and to store all the information needed for the production run, including product-specific settings and parameters that need to go back to the PLC controller.

In the figure below, three RFID tags are attached to different parts needed to run the production Variant A of a product.  All three tags are programmed for use with Variant A along with any required settings for the controller. For a different product size, the parts that needed to be swapped out would have a unique RFID tag on them – Variant B, for example. Before the controller starts a new production run, a RFID antenna can quickly scan the RFID tags to verify that all three Variant A parts are on the machine. The RFID antenna can quickly tell if a part was missing, or if Variant B was loaded by mistake. This can be tied back to a signal on the controller so that it does not run. The RFID antenna can also read the product-specific settings on the RFID tags and send those parameters to the controller as well, eliminating the need to manually enter the settings in the controller.

RFID helps by taking out the manual verification and adjustments needed by the operator. With careful planning and implementation, RFID technology can help reduce downtime, increase productivity, and improve operational efficiency.

Click here to learn about guided changeover solutions, including step-by-step instructions to improve OEE.

Using Guided Format Change to Improve Changeover and Productivity

Long before Covid, we were seeing an increase in the number of packaging SKUs. In 2019, Packaging Digest reported an estimated 42% increase in SKUs in the food and beverage industry.

Since Covid, there has been a further explosion of new packaging sizes, especially in the food and beverage marketplace. Food manufacturers have gotten very creative. Instead of raising prices due to the higher costs of goods, for example, they can reduce the size of product packages while keeping the consumer prices the same.

Many of today’s production machines are not equipped to changeover as quickly and as accurately to meet the demand of the marketplace. Manufacturers now face the challenge of “semi-automating” their existing machines, as opposed to procuring new machines or adding expensive motors to existing machines. One solution is to digitalize change points on existing machines.

Companies are looking to reduce the amount of time and the mistakes that occur when doing product changeovers. Allowing for operator guidance and position measurement can reduce your time and enhance your accuracy of those changeover events. Measurements are then tied to the recipe and the operator becomes the prime mover.

Guided Format Change

There are lots of technologies out there for helping with guided format change, such as automated position measurement, machine position, distance measurement, linear measurement, and digitalized rotary encoders.


As you are likely quite aware, there are often scales, marks, etc., written onto machines that don’t provide the greatest degree of accuracy. Introducing digitalized position and distance sensing can help you reduce time and limit errors during changeovers.

Change Part Identification

The other side of changeover is change part identification. Quite often during this process parts on the machine must be exchanged. Using the wrong change part can result in mistakes, waste, and delays, and can even damage existing machines.

Technologies, such as RFID, can help ensure the correct change part is chosen and added to the machine. During a recipe change, the operator can then validate that all the correct parts are installed before the startup of the next product run.

Guided format change is a cost-effective way to reduce changeover time and increase productivity either by retrofitting your existing machines or even new machines.

Sensor Mounting Made Easy

So, you’ve figured out the best way to detect the product shuttle paddle in your cartoning/packaging machine needs a visible red laser distance sensor. It’s taken some time to validate that this is the right sensor and it will be a reliable, long-term solution.

But then you realize there are some mechanical issues involved with the sensor’s placement and positioning that will require a bit of customization to mount it in the optimal location. Now things may have just become complicated. If you can’t design the additional mounting parts yourself, you’ll have to find someone who can. And then you have to deal with the fabrication side. This all takes time and more effort than just buying the sensor.

Or does it?

Off-the-shelf solutions

It doesn’t have to be that complex. There are possible off-the-self solutions you can consider that will make this critical step of providing a reliable mounting solution – possibly as straightforward as choosing the right sensor. Multiple companies offer sensor mounting systems that accommodate standard sensor brackets. Over the years, companies have continued to develop new mounting brackets for many of their sensor products, from photoelectric sensors and reflectors to proximity sensors to even RFID heads and linear transducers.

So it’s only natural to take that one step further and create a mounting apparatus and system that not only provides a mounting bracket, but also a stable platform that incorporates the device’s mounting bracket with things like stand-off posts, adjustable connection joints, and mounting bases. Such a flexible and extensive system can solve mounting challenges with parts you can purchase, instead of having to fabricate.

Imagine in the example above you need to mount the laser distance sensor off the machine’s base and offset it in a way that doesn’t interfere with the other moving parts of the cartoner. Think of these mounting systems and parts as a kind of Erector Set for sensing devices. You can piece together the required mounting bracket with a set of brace or extension rods and a mounting base that raises the sensor up and off the machine base and even angles it to allow for pointing at the target in the most optimal way.

The following are some mounting solutions for a variety of sensors:

These represent only a small number of different ways to mix and match sensor device brackets and mounting components to find a solid, reliable and off-the-shelf mounting solution for your next mounting challenge. So before considering the customization route, next time take a look at what might already be out there for vendors. It could make your life a lot simpler.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.

The 5 Most Common Types of Fixed Industrial Robots

The International Federation of Robotics (IFR) defines five types of fixed industrial robots: Cartesian/Gantry, SCARA, Articulated, Parallel/Delta and Cylindrical (mobile robots are not included in the “fixed” robot category). These types are generally classified by their mechanical structure, which dictates the ways they can move.

Based on the current market situation and trends, we have modified this list by removing Cylindrical robots and adding Power & Force Limited Collaborative robots. Cylindrical robots have a small, declining share of the market and some industry analysts predict that they will be completely replaced by SCARA robots, which can cover similar applications at higher speed and performance. On the other hand, use of collaborative robots has grown rapidly since their first commercial sale by Universal Robots in 2008. This is why collaborative robots are on our list and cylindrical/spherical robots are not.

Therefore, our list of the top five industrial robot types includes:

    • Articulated
    • Cartesian/Gantry
    • Parallel/Delta
    • SCARA
    • Power & Force Limited Collaborative robots

These five common types of robots have emerged to address different applications, though there is now some overlap in the applications they serve. And range of industries where they are used is now very wide. The IFR’s 2021 report ranks electronics/electrical, automotive, metal & machinery, plastic and chemical products and food as the industries most commonly using fixed industrial robots. And the top applications identified in the report are material/parts handling and machine loading/unloading, welding, assembling, cleanrooms, dispensing/painting and processing/machining.

Articulated robots

Articulated robots most closely resemble a human arm and have multiple rotary joints–the most common versions have six axes. These can be large, powerful robots, capable of moving heavy loads precisely at moderate speeds. Smaller versions are available for precise movement of lighter loads. These robots have the largest market share (≈60%) and are growing between 5–10% per year.

Articulated robots are used across many industries and applications. Automotive has the biggest user base, but they are also used in other industries such as packaging, metalworking, plastics and electronics. Applications include material & parts handling (including machine loading & unloading, picking & placing and palletizing), assembling (ranging from small to large parts), welding, painting, and processing (machining, grinding, polishing).

SCARA robots

A SCARA robot is a “Selective Compliance Assembly Robot Arm,” also known as a “Selective Compliance Articulated Robot Arm.” They are compliant in the X-Y direction but rigid in the Z direction. These robots are fairly common, with around 15% market share and a 5-10% per year growth rate.

SCARA robots are most often applied in the Life Sciences, Semiconductor and Electronics industries. They are used in applications requiring high speed and high accuracy such as assembling, handling or picking & placing of lightweight parts, but also in 3D printing and dispensing.

Cartesian/Gantry robots

Cartesian robots, also known as gantry or linear robots, move along multiple linear axes. Since these axes are very rigid, they can precisely move heavy payloads, though this also means they require a lot of space. They have about 15% market share and a 5-10% per year growth rate.

Cartesian robots are often used in handling, loading/unloading, sorting & storing and picking & placing applications, but also in welding, assembling and machining. Industries using these robots include automotive, packaging, food & beverage, aerospace, heavy engineering and semiconductor.

Delta/Parallel robots

Delta robots (also known as parallel robots) are lightweight, high-speed robots, usually for fast handling of small and lightweight products or parts. They have a unique configuration with three or four lightweight arms arranged in parallelograms. These robots have 5% market share and a 3–5% growth rate.

They are often used in food or small part handling and/or packaging. Typical applications are assembling, picking & placing and packaging. Industries include food & beverage, cosmetics, packaging, electronics/ semiconductor, consumer goods, pharmaceutical and medical.

Power & Force Limiting Collaborative robots

We add the term “Power & Force Limiting” to our Collaborative robot category because the standards actually define four collaborative robot application modes, and we want to focus on this, the most well-known mode. Click here to read a blog on the different collaborative modes. Power & Force Limiting robots include models from Universal Robots, the FANUC CR green robots and the YuMi from ABB. Collaborative robots have become popular due to their ease of use, flexibility and “built-in” safety and ability to be used in close proximity to humans. They are most often an articulated robot with special features to limit power and force exerted by the axes to allow close, safe operation near humans or other machines. Larger, faster and stronger robots can also be used in collaborative applications with the addition of safety sensors and special programming.

Power & Force Limiting Collaborative robots have about 5% market share and sales are growing rapidly at 20%+ per year. They are a big success with small and mid-size enterprises, but also with more traditional robot users in a very broad range of industries including automotive and electronics. Typical applications include machine loading/unloading, assembling, handling, dispensing, picking & placing, palletizing, and welding.

Summary­

The robot market is one of the most rapidly growing segments of the industrial automation industry. The need for more automation and robots is driven by factors such as supply chain issues, changing workforce, cost pressures, digitalization and mass customization (highly flexible manufacturing). A broad range of robot types, capabilities and price points have emerged to address these factors and satisfy the needs of applications and industries ranging from automotive to food & beverage to life sciences.

Note: Market share and growth rate estimates in this blog are based on public data published by the International Federation of Robotics, Loup Ventures, NIST and Interact Analysis.

Ensure Food Safety with Machine Vision

Government agencies have put food manufacturers under a microscope to ensure they follow food safety standards and comply with regulations. When it comes to the health and safety of consumers, quality assurance is a top priority, but despite this, according to The World of Health Organization, approximately 600 million people become ill each year after eating contaminated food, and 420,000 die.

Using human manual inspection for quality assurance checks in this industry can be detrimental to the company and its consumers due to human error, fatigue and subjective opinions. Furthermore, foreign particles that should not be found in the product may be microscopic and invisible to the human eye. These defects can lead to illness, recalls, lawsuits, and a long-term negative perception of the brand itself. Packaging, food and beverage manufacturers must realize these potential risks and review the benefits of incorporating machine vision. Although machine vision implementation may sound like a costly investment, it is small price to pay when compared to the potential damage of uncaught issues. Below I explore a few benefits that machine vision offers in the packaging, food and beverage industries.

Safety
Consumers expect and rely on safe products from food manufacturers. Machine vision can see through packaging to determine the presence of foreign particles that should not be present, ensuring these products are removed from the production line. Machine vision is also capable of inspecting for cross-contamination, color correctness, ripeness, and even spoilage. For example, bruises on apples can be hard to spot for the untrained eye unless extremely pronounced. SWIR (shortwave infrared) illumination proves effective for the detection of defects and contamination. Subsurface bruising defects become much easier to detect due to the optimization of lighting and these defected products can be scrapped.

Uniformity of Containers
Brand recognition is huge for manufacturers in this industry. Products that have defects such as dents or uneven contents inside the container can greatly affect the public’s perception of the product and/or company. Machine vision can detect even the slightest deformity in the container and ensure they are removed from the line. It can also scan the inside of the container to ensure that the product is uniform for each batch. Vision systems have the ability optimize lighting intensity, uniformity, and geometry to obtain images with good contrast and signal to noise. Having the ability to alter lighting provides a much clearer image of the point of interest. This can allow you to see inside a container to determine if the fill level is correct for the specific product.

Packaging
Packaging is important because if the products shipped to the store are regularly defected, the store can choose to stop stocking that item, costing the manufacturer valuable business. The seal must last from production to arrival at the store to ensure that the product maintains its safe usability through its marked expiration date. In bottling applications, the conveyors are moving at high speeds so the inspection process must be able to quickly and correctly identify defects. A facility in Marseille, France was looking to inspect Heineken beer bottles as they passed through a bottling machine at a rate of 22 bottles/second (80,000 bottles/hour). Although this is on the faster end of the spectrum, many applications require high-speed quality checks that are impossible for a human operator. A machine vision system can be configured to handle these high-speed applications and taught to detect the specified defect.

Labels

It’s crucial for the labels to be printed correctly and placed on the correct product because of the food allergy threats that some consumers experience. Machine vision can also benefit this aspect of the production process as cameras can be taught to recognize the correct label and brand guidelines. Typically, these production lines move at speeds too fast for human inspection. An intuitive, easy to use, machine vision software package allows you to filter the labels, find the object using reference points and validate the text quickly and accurately.

These areas of the assembly process throughout packaging, food and beverage facilities should be considered for machine vision applications. Understanding what problems occur and the cost associated with them is helpful in justifying whether machine vision is right for you.

For more information on machine vision, visit https://www.balluff.com/local/us/products/product-overview/machine-vision-and-optical-identification/.

 

 

Document Product Quality and Eliminate Disputes with Machine Vision

“I caught a record-breaking walleye last weekend,” an excited Joe announced to his colleagues after returning from his annual fishing excursion to Canada.

“Record-breaking?  Really?  Prove it.” demanded his doubtful co-worker.

Well, I left my cell phone in the cabin so it wouldn’t get wet on the boat so I couldn’t take a picture, but I swear that big guy was the main course for dinner.”

“Okay, sure it was Joe.”

We have all been there — spotted a mountain lion, witnessed an amazing random human interaction, or maybe caught a glimpse at a shooting star.  These are great stories, but they are so much more believable and memorable with a picture or video to back them up.  Now a days, we all carry a camera within arm’s reach.  Capturing life events has never been easier and more common, so why not use cameras to document and record important events and stages within your manufacturing process?

As the smart phone becomes more advanced and common, so does the technology and hardware for industrial cameras (i.e. machine vision).  Machine vision can do so much more than pass fail and measurement type applications.  Taking, storing, and relaying pictures along different stages of a production process could not only set you apart from the competition but also save you costly quality disputes after it leaves your facility.  A picture can tell a thousand words, so what do you want to tell the world?  Here are just a couple examples how you can back up you brand with machine vision:

Package integrity: We have all seen the reduced rack at a grocery store where a can is dented or missing a label.  If this was caused by a large-scale label application defect, someone is losing business.  So, before everyone starts pointing fingers, the manufacturer could simply provide a saved image from their end-of line-vision system to prove the cans were labeled when shipped from their facility.

Assembly defects: When you are producing assembled parts for a larger manufacturer, the standards they set are what you live and die by.  If there is ever a dispute, having several saved images from either individual parts or an audit of them throughout the day could prove your final product met their specifications and could save your contract.

Barcode legibility and placement: Show your retail partners that your product’s bar code will not frustrate the cashier by having to overcome a poorly printed or placed barcode.  Share images with them to show an industrial camera easily reading the code along the packaging line ensuring a hassle-free checkout as well as a barcode grade to ensure their barcode requirements are being met.

In closing, pictures always help tell a story and make it more credible.  Ideally your customers will take your word for it, but when you catch the record-breaking walleye, you want to prove it.

Reduce Packaging Downtime with Machine Vision

Packaging encompasses many different industries and typically has several stages in its process. Each industry uses packaging to accomplish specific tasks, well beyond just acting as a container for a product. The pharmaceutical industry for example, typically uses its packaging as a means of dispensing as well as containing. The food and beverage industry uses packaging as a means of preventing contamination and creating differentiation from similar products. Consumer goods typically require unique product containment methods and have a need for “eye-catching” differentiation.

The packaging process typically has several stages. For example, you have primary packaging where the product is first placed in a package, whether that is form-fill-seal bagging or bottle fill and capping. Then secondary packaging that the consumer may see on the shelf, like cereal boxes or display containers, and finally tertiary packaging or transport packaging where the primary or secondary packaging is put into shipping form. Each of these stages require verification or inspection to ensure the process is running properly, and products are properly packaged.

1

Discrete vs. Vision-Based Error Proofing

With the use of machine vision technology, greater flexibility and more reliable operation of the packaging process can be achieved. Typically, in the past and still today, discrete sensors have been used to look for errors and manage product change-over detection. But with these simple discrete sensing solutions come limitations in flexibility, time consuming fixture change-overs and more potential for errors, costing thousands of dollars in lost product and production time. This can translate to more expensive and less competitively priced products on the store selves.

There are two ways implementing machine vision can have a benefit toward improving the scheduled line time. The first is reducing planned downtime by reducing product change over and fixturing change time. The other is to decrease unplanned downtime by catching errors right away and dynamically rejecting them or bringing attention to line issues requiring correction and preventing waste. The greatest benefit vision can have for production line time is in reducing the planned downtime for things like product changeovers. This is a repeatable benefit that can dramatically reduce operating costs and increase the planned runtime. The opportunities for vision to reduce unplanned downtime could include the elimination of line jams due to incorrectly fed packaging materials, misaligned packages or undetected open flaps on cartons. Others include improperly capped bottles causing jams or spills and improper adjustments or low ink causing illegible labeling and barcodes.

Cost and reliability of any technology that improves the packaging process should always be proportional to the benefit it provides. Vision technologies today, like smart cameras, offer the advantages of lower costs and simpler operation, especially compared to the older, more expensive and typically purpose-built vision system counterparts. These new vision technologies can also replace entire sensor arrays, and, in many cases, most of the fixturing at or even below the same costs, while providing significantly greater flexibility. They can greatly reduce or eliminate manual labor costs for inspection and enable automated changeovers. This reduces planned and unplanned downtime, providing longer actual runtime production with less waste during scheduled operation for greater product throughput.

Solve Today’s Packaging Challenges

Using machine vision in any stage of the packaging process can provide the flexibility to dramatically reduce planned downtime with a repeatable decrease in product changeover time, while also providing reliable and flexible error proofing that can significantly reduce unplanned downtime and waste with examples like in-line detection and rejection to eliminate jams and prevent product loss. This technology can also help reduce or eliminate product or shipment rejection by customers at delivery. In today’s competitive market with constant pressure to reduce operating costs, increase quality and minimize waste, look at your process today and see if machine vision can make that difference for your packaging process.

Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!

 

 

The Benefits of Guided Changeover in Packaging

Today’s consumer packaged goods (CPG) market is driving the need for greater agility and flexibility in packaging machinery.  Shorter, more customized runs create more frequent machine changeover.  Consequently, reducing planned and unplanned downtime at changeover is one of the key challenges CPG companies are working to improve.

Many packaging machine builders are now providing fully automated changeover, where motors move pieces into the correct position upon recipe change.  This has proven to be a winning solution, however, not every application can accommodate motors, especially those on older machines.

Guided changeover represents an opportunity to modify or retrofit existing equipment to improve agility and flexibility on older machines that are not yet ready to be replaced.

An affordable intermediate step between fully manual and fully automated changeover: 

A measurement sensor can be added to provide position feedback on parts that require repositioning for changeover.  By using indicator lights, counters or displays at the point of use, the operator is provided with visual guidance to reposition the moving part.  Only once all parts are in the correct position can the machine start up and run.

By utilizing this concept, CPG companies can realize several key benefits:

  • Reduced planned downtime: Adding guidance reduces the amount of time it takes to move parts into the correct position.
  • Reduced unplanned downtime: Providing operator guidance minimizes mistakes, avoiding jams and other problems caused by misalignment.
  • Reduced waste: Operators can “dial in” moving parts quickly and precisely.  This allows the machine to be fully operational sooner, minimizing runoff and scrap.
  • Improved operator training: Providing operator guidance helps CPG companies deal with inevitable workforce attrition.  New operators can be quickly trained on changeover procedures.

Selecting the correct sensor

A variety of sensor technologies can be used to create guide changeover; it’s really a matter of fit, form and function.  Common technologies used in changeover position applications include linear positioning transducers  and encoders.  Other devices like inductive and photoelectric distance sensors can be used with some creativity to solve challenging applications.

Available mounting space and environmental conditions should be taken into consideration when selecting the correct device.  Sensors with enhanced IP ratings are available for harsh environmental conditions and washdown.

Analog devices are commonly used to retrofit machines with older PLCs, while IO-Link can be used in place of analog for a fully digital solution, enabling bi-directional communication between the sensor and controller for condition monitoring, automatic device replacement and parameter changes.