There’s more than just one miniature sensor technology

As I discussed in my last blog post, there is a need for miniature, precision sensors. However, finding the right solution for a particular application can be a difficult process. Since every sensor technology has its own strengths and weaknesses, it is vital to have a variety of different sensor options to choose from.

The good news is that there are several different technologies to consider in the miniature, precision sensor world. Here we will briefly look at three technologies: photoelectric, capacitive, and inductive. Together these three technologies have the ability to cover a wide range of applications.

Photoelectric Sensors

MiniPhotoelectricPhotoelectric sensors use a light emitter and receiver to detect the presence or absence of an object. This type of sensor comes in different styles for flexibility in sensing. A through-beam photoelectric is ideal for long range detection and small part detection. Whereas a diffuse photoelectric is ideal for applications where space is limited or in applications where sensing is only possible from one side.

Miniature photoelectric sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Capacitive Sensors

MiniCapacitiveCapacitive sensors use the electrical property of capacitance and work by measuring changes in this electrical property as an object enters its sensing field. Capacitive sensors detect the presence or absence of virtually any object with any material, from metals to powders to liquids. It also has the ability to sense through a plastic or glass container wall to detect proper fill level of the material inside the container.

Miniature capacitive sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Inductive Sensors

MiniInductiveInductive sensors use a coil and oscillator to create a magnetic field to detect the presence or absence of any metal object. The presence of a metal object in the sensing field dampens the oscillation amplitude. This type of sensor is, of course, ideal for detecting metal objects.

Miniature inductive sensors come with the electronics fully integrated into the sensor.

One sensor technology isn’t enough since there isn’t a single technology that will work across all applications. It’s good to have options when looking for an application solution.

To learn more about these technologies, visit www.balluff.us

Meeting the Challenges of Precision Sensing: High Acceleration Machinery

Challenge: High Acceleration Machine Movement

Fundamental application problem: Anything mounted to the moving mechanism must be low mass

  • Added mass reduces acceleration capability of a given motor & drive system
  • Added mass increases motor and drive size requirements to meet acceleration specs, driving costs higher
  • Larger motors increase energy consumption, which makes the machine less competitive in the market
  • Any space taken up by sensors reduces space available for tooling and work-in-process
  • Conventional prox sensors and brackets are much too large and heavy to address these requirements

Solution: Incredibly miniaturized, self-contained inductive proximity sensors

  • Tiny size = inherently low mass
  • Correspondingly tiny mounting brackets = inherently low mass
  • Totally self-contained electronics = zero space taken up by separate amplifier
  • Miniaturization of sensors allows no-compromise installation in compact tooling
  • Additional tooling sensors enhance the level of high-end machine automation/control that can be achieved

Stay tuned to this space for more precision sensing challenges and solutions. Miniaturized sensors are also available in photoelectric, capacitive, magnetic cylinder, ultrasonic, and magnetic encoder. Click here to see the whole mini family.