There’s more than just one miniature sensor technology

As I discussed in my last blog post, there is a need for miniature, precision sensors. However, finding the right solution for a particular application can be a difficult process. Since every sensor technology has its own strengths and weaknesses, it is vital to have a variety of different sensor options to choose from.

The good news is that there are several different technologies to consider in the miniature, precision sensor world. Here we will briefly look at three technologies: photoelectric, capacitive, and inductive. Together these three technologies have the ability to cover a wide range of applications.

Photoelectric Sensors

MiniPhotoelectricPhotoelectric sensors use a light emitter and receiver to detect the presence or absence of an object. This type of sensor comes in different styles for flexibility in sensing. A through-beam photoelectric is ideal for long range detection and small part detection. Whereas a diffuse photoelectric is ideal for applications where space is limited or in applications where sensing is only possible from one side.

Miniature photoelectric sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Capacitive Sensors

MiniCapacitiveCapacitive sensors use the electrical property of capacitance and work by measuring changes in this electrical property as an object enters its sensing field. Capacitive sensors detect the presence or absence of virtually any object with any material, from metals to powders to liquids. It also has the ability to sense through a plastic or glass container wall to detect proper fill level of the material inside the container.

Miniature capacitive sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Inductive Sensors

MiniInductiveInductive sensors use a coil and oscillator to create a magnetic field to detect the presence or absence of any metal object. The presence of a metal object in the sensing field dampens the oscillation amplitude. This type of sensor is, of course, ideal for detecting metal objects.

Miniature inductive sensors come with the electronics fully integrated into the sensor.

One sensor technology isn’t enough since there isn’t a single technology that will work across all applications. It’s good to have options when looking for an application solution.

To learn more about these technologies, visit www.balluff.us

Trending Now: Miniature Sensors

Celebrating the Holiday season is one of my favorite times of the year. Some of the common activities I enjoy include spending time with family and friends, eating a tremendous amount of food (and wondering afterward why I do this to myself year after year), and giving and receiving a few presents. Let’s focus on the presents aspect for a second. The bigger the present the better, right? Well, we know that’s not always the case. That smaller present could very well be the perfect gift.

minifamilyNow let’s shift gears and look at manufacturing. There is a trend in manufacturing, in general, toward miniaturization. Earlier this year I was shown a website, MICRO Manufacturing, that looks across different industries to see how the miniaturization trend is being engaged. One of the more obvious cases is in consumer electronics. It all started taking off with the desktop computer. Following the desktop computer was the laptop. And in the past few years we’ve seen the rise of smartphones and tablets. Now we’re beginning to see smart wearable devices (watches, fitness trackers, glasses, etc.). Who knows what will happen next? I bet we could take a good guess: it’ll be something even smaller.

As manufacturing continues in this direction, the demand for miniature sensors grows. However, miniature sensors aren’t just defined by their small form factor, but also by their precision. Miniature sensors are developed with a clear purpose to meet these manufacturing requirements. For more information, please click here.

And, just like that small present during the Holidays, a miniature, precision sensor could be the perfect solution.

Meeting the Challenges of Precision Sensing: Very Small Target Displacement

Fundamental application problem: Inductive prox sensor is latching on (or…failing to turn on)

  • The prox sensor gap is set to turn on when the target approaches, but it does not turn off when the target recedes (latching on)
  • The prox gap is opened up until sensor turns off at maximum target approach, but it fails to detect the target upon the next approach cycle
  • The prox sensor gap is set to turn on when the target approaches, but later on the operation becomes intermittent (prox fails to reliably detect the target)

Solution: High-performance miniature inductive prox sensor

Critical sensing performance specifications:

o   Low variation of switch point from sample to sample
o   Tight repeat accuracy of switch point
o   Low temperature drift of switch point
o   Low maximum hysteresis (distance between switch-on to switch-off)

Continue reading “Meeting the Challenges of Precision Sensing: Very Small Target Displacement”