Where Discrete Position Sensing Belongs in the Manufacturing Process

Unlike continuous position sensors which provide near real-time position feedback throughout the stroke of the cylinder, discrete position sensors are equipped with a switching functionality at one or more designated positions along the cylinder’s stroke. Typically, these positions are set to detect fully retracted and extended positions but one can also be used to detect mid-stroke position.

To determine which is right for you requires a review of your application and a determination of how precisely the movement of the cylinder needs to be controlled. Some hydraulic cylinder applications require no position sensing at all. These applications simply use the cylinder to move a load, and position control is either done manually or by some other external switch or stop. Moving up a step, many applications require only that the beginning and end of the cylinder stroke be detected so that the cylinder can be commanded to reverse direction. These applications are ideal for discrete position sensing.

Several types of sensors are used for discrete position detection, but one of the most common is high-pressure inductive proximity sensors, which are installed into the end caps of the cylinder. The sensors detect the piston as it reaches the end of the cylinder stroke in either direction.

These sensors are designed to withstand the full pressure of the hydraulic system. Inductive sensors are extremely reliable because they operate without any form of mechanical contact and are completely unaffected by changes in oil temperature or viscosity.

High-pressure
High-pressure inductive sensors installed in hydraulic cylinder

Discrete position sensors are used in applications such as hydraulic clamps, detection of open/closed position in welding operations, and in hydraulic compactors and balers for compacting materials until end of cylinder stroke is reached, at which point the cylinder retracts.

Additionally, it is quite common for pneumatically-actuated clamps and grippers to use discrete sensors to indicate fully extended and fully retracted positions, and in many cases, in-between positions as well. There are even applications where multiple discrete sensors are used in grippers for gauging and sizing work pieces.

By far, the most common method of providing discrete position in an air cylinder is to use externally-mounted switches that react to a magnet installed around the circumference of the piston. These magnetically-actuated switches can sense the field of a magnet embedded in the cylinder’s piston through the aluminum body of the cylinder.

magnetically actuated
Magnetically actuated sensor installed into cylinder C-slot

There are several different operating principles used in these magnetically-actuated switches, ranging from simple, low-cost reed switches and Hall-effect switches to significantly more reliable sensors that use magnetoresistive technology. One of the big advantages of magnetoresistive sensors is that they will reliably detect both radial and axial magnetic fields, making them ideal replacements for reed or Hall-effect switches.

Check out our previous blog to learn more about continuous position sensors.

Ensure Optimum Performance In Hostile Welding Cell Environments

The image above demonstrates the severity of weld cell hostilities.

Roughly four sensing-related processes occur in a welding cell with regards to parts that are to be joined by MIG, TIG and resistance welding by specialized robotic /automated equipment:

  1. Nesting…usually, inductive proximity sensors with special Weld Field Resistance properties and hopefully, heavy duty mechanical properties (coatings to resist weld debris accumulation, hardened faces to resist parts loading impact and well-guarded cabling) are used to validate the presence of properly seated or “nested” metal components to ensure perfectly assembled products for end customers.
  2. Poke-Yoke Sensing (Feature Validation)…tabs, holes, flanges and other essential details are generally confirmed by photoelectric, inductive proximity or electromechanical sensing devices.
  3. Pneumatic and Hydraulic cylinder clamping indication is vital for proper positioning before the welding occurs. Improper clamping before welding can lead to finished goods that are out of tolerance and ultimately leads to scrap, a costly item in an already profit-tight, volume dependent business.
  4. Several MIB’s covered in weld debris

    Connectivity…all peripheral sensing devices mentioned above are ultimately wired back to the controls architecture of the welding apparatus, by means of junction boxes, passive MIB’s (multiport interface boxes) or bus networked systems. It is important to mention that all of these components and more (valve banks, manifolds, etc.) and must be protected to ensure optimum performance against the extremely hostile rigors of the weld process.

Magnetoresistive (MR), and Giant Magnetoresistive (GMR) sensing technologies provide some very positive attributes in welding cell environments in that they provide exceptionally accurate switching points, have form factors that adapt to all popular “C” slot, “T” slot, band mount, tie rod, trapezoid and cylindrical pneumatic cylinder body shapes regardless of manufacturer. One model family combines two separate sensing elements tied to a common connector, eliminating one wire back to the host control. One or two separate cylinders can be controlled from one set if only one sensor is required for position sensing.

Cylinder and sensor under attack.

Unlike reed switches that are very inexpensive (up front purchase price; these generally come from cylinder manufacturers attached to their products) but are prone to premature failure.  Hall Effect switches are solid state, yet generally have their own set of weaknesses such as a tendency to drift over time and are generally not short circuit protected or reverse polarity protected, something to consider when a performance-oriented cylinder sensing device is desired.  VERY GOOD MR and GMR cylinder position sensors are guaranteed for lifetime performance, something of significance as well when unparalleled performance is expected in high production welding operations.

But!!!!! Yes, there is indeed a caveat in that aluminum bodied cylinders (they must be aluminum in order for its piston-attached magnet must permit magnetic gauss to pass through the non-ferrous cylinder body in order to be detected by the sensor to recognize position) are prone to weld hostility as well. And connection wires on ALL of these devices are prone to welding hostilities such as weld spatter (especially MIG or Resistance welding), heat, over flex, cable cuts made by sharp metal components and impact from direct parts impact. Some inexpensive, effective, off-the-shelf protective silicone cable cover tubing, self-fusing Weld Repel Wrap and silicone sheet material cut to fit particular protective needs go far in protecting all of these components and guarantees positive sensor performance, machine up-time and significantly reduces nuisance maintenance issues.

To learn more about high durability solutions visit www.balluff.com.

Reed Switches vs. Magnetoresistive Sensors (GMR)

In a previous post we took a look at magnetic field sensors vs inductive proximity sensors for robot grippers. In this post I am going to dive a little deeper into magnetic field sensors and compare two technologies: reed switches, and magnetoresistive sensors (GMR).

Reed Switches

PrintThe simplest magnetic field sensor is the reed switch. This device consists of two flattened ferromagnetic nickel and iron reed elements, enclosed in a hermetically sealed glass tube. As an axially aligned magnet approaches, the reed elements attract the magnetic flux lines and draw together by magnetic force, thus completing an electrical circuit.

While there are a few advantages of this technology like low cost and high noise immunity, those can be outweighed by the numerous disadvantages. These switches can be slow, are prone to failure, and are sensitive to vibration. Additionally, they react only to axially magnetized magnets and require high magnet strength.

Magnetoresistive Sensors (GMR)

PrintThe latest magnetic field sensing technology is called giant magnetoresistive (GMR). Compared to Reed Switches GMR sensors have a more robust reaction to the presence of a magnetic field due to their high sensitivity, less physical chip material is required to construct a practical GMR magnetic field sensor, so GMR sensors can be packaged in much smaller housings for applications such as short stroke cylinders.

GMR sensors have quite a few advantages over reed switches. GMR sensors react to both axially and radially magnetized magnets and also require low magnetic strength. Along with their smaller physical size, these sensors also have superior noise immunity, are vibration resistant. GMR sensors also offer protection against overload, reverse polarity, and short circuiting.

What is the hysteresis of your magnetic field sensor?

Share/Bookmark

I received a call the other day from a customer who wanted to use a magnetic field sensor on a cylinder, and evidently was requiring very precise results. He asked, “what is the hysteresis of your sensors? I notice that it is listed in your catalog as a percentage and I need to know the exact value in millimeters.” My response was, “well it depends”,  upon which he was not overly pleased. I then continued to explain my answer which leads me to the contents of this posting.

Continue reading “What is the hysteresis of your magnetic field sensor?”

Better Alternatives to Pneumatic Cylinder End-of-Stroke Detection

Share/Bookmark

There are better alternatives to detect pneumatic cylinder end of stroke position than reed switches or proximity switches. By better, I mean they are faster and easier to implement into your control system. In addition, you can realize other benefits such as commonality of spare sensors and lower long-term costs. So what are the better solutions?

Continue reading “Better Alternatives to Pneumatic Cylinder End-of-Stroke Detection”