Error-Free Assembly of Medical Components

A SUV and a medical device used in a lab aren’t very similar in their looks, but when it comes to manufacturing them, they have a lot in common. For both, factory automation is used to increase production volume while also making sure that production steps are completed precisely. Read on to learn about some ways that sensors are used in life science manufacturing.

Sensors with switching output

Automation equipment producers are creative builders of specialized machines, as each project differs somehow from previous ones. When it comes to automated processes in the lab and healthcare sectors where objects being processed or assembled are small, miniaturization is required for manufacturing equipment as well.  Weight reduction also plays an important role in this, since objects with a lower mass can be moved quickly with a smaller amount of force. By using light-weight sensors on automated grippers, they can increase the speed of actuator movements.

Conveyor system using photoelectric sensors for object detection

Photoelectric sensors are quite common in automated production because they can detect objects from a distance. Miniaturized photoelectric sensors are more easily placed in a production process that works with small parts. And photoelectric sensors can be used to detect objects that are made of many different types of material.

A common challenge for lab equipment is to detect clear liquids in clear vessels. Click here for a description of how specialized photoelectric sensors face this challenge.

Specialized photoelectric sensors for clear water detection

Image Processing

Within the last several years, camera systems have been used more frequently in the production of lab equipment. They are fast enough for high-speed production processes and support the use of artificial intelligence through interfaces to machine learning systems.

Identification

In any production setting, products, components and materials must be identified and tracked. Both optical identification and RFID technology are suitable for this purpose.

Sample analysis with industrial camera

Optical identification systems use a scanner to read one-dimensional barcodes or two-dimensional data matrix or QR codes and transmit the object information centrally to a database, which then identifies the object. The identification cost per object is pretty low when using a printed label or laser marking on the object.

When data must be stored directly on or with the object itself, often because the data needs to be changed or added to during the production process, RFID (Radio Frequency Identification) is the best choice. Data storage tags come in many different sizes and can store different amounts of data and have other features to meet specific needs. This decentralized data storage has advantages in fast production processes when there is a need for real-time data storage.

Data of RFID tag at pallet are read and written with RFID read/write head and transferred via bus module

There are numerous parallels between automation in the life science sector and general factory automation. While these manufacturing environments both have their own challenges, the primary automation task is the same: find the best sensor for your application requirements. Being able to choose from many types of sensors, with different sizes and characteristics, can make that job a lot easier. For more information about the life sciences industries, visit https://www.balluff.com/en-us/industries/life-science.

Magnetic Encoders in Metalworking

When thinking about position sensing in machine tool applications typically glass scale systems for the CNC axis control come to your mind. These sensor principles are the most used ones in modern machine tools and are applied to requirements with resolutions to even submicrometer resolutions. Yet there are many other applications in metalworking which do not need these high end but also high priced measuring systems.

Loading and Unloading of Workpieces

In highly automated processes of loading and unloading workpieces the required repeatability of the motion axis positions is in hundreds of millimeters. This is accurate enough to achieve a reliable and accurate handling of the workpieces. Here magnetic linear encoder systems provide an optimum performance-to-cost-ratio. With significantly lower price levels compared to glass scale systems and much easier installation the total cost of ownership is much better compared to glass scale systems. These magnetic linear encoder systems are offered with both incremental and absolute output signals. Signal types for incremental outputs are quadrature or sinusoidal. Absolute outputs e.g. are used with the industrially standardized SSI and BISS interfaces. Now more and more popularity the recently also industrially standardized serial IO-Link interface has gained.

The non contact, wear free system is designed for a long lifetime and allows tolerances in alignment to a certain extent, which is especially relevant in applications of axis lengths of several meters.

Position sensing at rotating applications

The usage of CNC controls started with typically 3 axis (X-, Y, Z-). In the last years more and more 5 axis solutions have entered the market as they offer more flexibility in manufacturing. Additionaly the efficiency of these machines is higher as in many cases workpieces may be produced without the need of manually changing their orientation in the machining process.

Modular systems like rotary tables and swivel tables significantly increase the performance of machine tools. The highly compact design of magnetic rotary encoder systems supports the design of these mechatronic modular  Systems.

Another advantage of the magnetic rotary encoder principle is the generous leeway in the center of the axis which allows more room for media such as coolants as well as the power supply and signal lines.

Summary

Besides the usage of glass scale systems for the classical 3-axis control of CNC machines the automation of Metalworking processes in machine tools more and more uses magnetic encoder systems thanks to their features like compact design, cost efficiency and easy installation. Drivers for the design of new machine tool concepts will be efficiency and flexibility. Definitely magnetic encoders support these demands.

More information about magnetic encoders is available here.