Requirements for Sanitary Fill Level Sensors

In a previous entry here on the SensorTech blog, we discussed the concept of liquid level sensing, and the difference between discrete liquid level detection and continuous liquid level monitoring.  In this entry, we are going to talk about the requirements for liquid level sensors that are used to measure or monitor liquid products that will ultimately be consumed by humans.

In these applications, it is necessary and critical that sanitary standards be met and maintained.  Sensor designed for sanitary applications are usually designed from the ground up to meet these requirements.

Basically, there are two key criteria that come into play when considering the suitability of a sensor to be used in a sanitary environment:

  • Cleanability – Sanitary filling systems typically need to be regularly cleaned and/or sterilized to prevent the growth of potentially harmful bacteria. It is desirable in most cases that the cleaning/sterilization process be done as quickly and as easily as possible, without having to remove components (including sensors) from the system.  For this reason, many sanitary fill sensors are designed to withstand “cleaning-in-place” (CIP).  Factors such as water-tightness, and ability to withstand elevated cleaning solution temperatures come into play for CIP suitability.
  • Mechanical Sensor Design – Sensors for sanitary fill applications are usually designed such that there are no mechanical features that would allow liquid or debris to collect. Crevices, grooves, seams, etc. can all act as collection points for liquid, and can ultimately lead to contamination.  For this reason, sanitary sensors are designed without such features.  The physical make-up of the sensor surface is also important.  Exterior surfaces need to be very smooth and non-reactive (e.g. high-grade stainless steel).  Such materials also contribute to cleanability.

Consistent standards for sanitary equipment, products, and processes are defined and maintained by 3-A SSI, a not-for-profit entity that provides consistent, controlled, and documented standards and certifications for manufacturers and users of sanitary equipment, particularly in the food, beverage, and pharmaceutical industries.  Equipment that meets these sanitary standards will usually display the 3-A symbol. For more information on this solution visit the Balluff website.

Detecting Small Bubbles? Consider These Factors First

BubbleDetectionBubble or air-in-line detection is a common lab automation application. In these types of applications it’s important to know whether or not liquid is flowing through a line to ensure safe and proper function in liquid-handling processes.  As these processes utilize smaller and smaller volumes of liquid — which provides cost and time saving benefits — it becomes more and more difficult to detect the potential air pockets forming inside the line. The most common approach in detecting these minute air pockets is a through-beam, photoelectric bubble sensor.

Photoelectric bubble sensors provide non-invasive detection of fluids and air pockets residing inside a tube. They have fixed opening dimensions for standard tube sizes allowing the selected tube to sit in perfect position between the sensor’s optical components. When the sensor’s light beam is blocked by fluid (or an air pocket) inside the tube, the received signal varies and external electronics determine if the signal variation is above or below the set threshold. Once the threshold is met the sensor’s output is switched.

Detecting bubbles sounds quite straightforward and simple, but in reality the application can be somewhat complicated. Several factors should be considered for reliable detection. Listed below are a few factors to consider:

  1. Tube diameters (inner and outer)
  2. Tube transparency
  3. Liquid type(s)
  4. Liquid transparency

Tube Diameters

Tube Sensor DrawingBecause a tube acts as a lens for light to travel it’s important to factor in the tube diameters. If there is a large difference between the outer and inner diameters of a particular tube, the outcome is a relatively large tube wall. A large tube wall will allow light rays to travel from the emitter through the wall straight to the detector without passing through the inner diameter of the tube, where the liquid or bubble is present. This causes unreliable detection. By accounting for both the inner and outer tube diameters a proper determination can be made in selecting what type of sensor to use to ensure that light only passes through the inner diameter of the tube and not through the wall.

Tube Transparency

Since photoelectric tube sensors operate on the principle of light detection, light must make it through one end of the tube and out the other end. Therefore, the transparency of the tube is critical. If the tube is opaque a photoelectric sensor solution is unlikely; however, in some cases it’s possible for a photoelectric tube sensor to detect through an opaque tube.

Liquid Type(s) and Transparency

The liquid type(s) and transparency are critical when determining which photoelectric tube sensor to use. If the liquid type is non-aqueous, without factoring in its transparency, it’s best to use the principle of light refraction through the liquid. If the liquid type is aqueous and is completely transparent or semitransparent, it’s best to use the principle of light absorption through the liquid. The following table will help determine what type of sensor to use with respect to the liquid type present inside the tube.

BubbleSensingChart

Since the type of applications that require precise bubble detection range in specifications from the use of hundreds of different liquids to specialized tube dimensions, this post only touches the surface of the photoelectric sensors for bubble detection.  For more information on tube sensors, please visit the Balluff website.