The Right Mix of Products for Recipe-Driven Machine Change Over

The filling of medical vials requires flexible automation equipment that can adapt to different vial sizes, colors and capping types. People are often deployed to make those equipment changes, which is also known as a recipe change. But by nature, people are inconsistent, and that inconsistency will cause errors and delay during change over.

Here’s a simple recipe to deliver consistency through operator-guided/verified recipe change. The following ingredients provide a solid recipe-driven change over:

Incoming Components: Barcode

Fixed mount and hand-held barcode scanners at the point-of-loading ensure correct parts are loaded.

Change Parts: RFID

Any machine part that must be replaced during a changeover can have a simple RFID tag installed. A read head reads the tag in ensure it’s the correct part.

Feed Systems: Position Measurement

Some feed systems require only millimeters of adjustment. Position sensor ensure the feed system is set to the correct recipe and is ready to run.

Conveyors Size Change: Rotary Position Indicator

Guide rails and larger sections are adjusted with the use of hand cranks. Digital position indicators show the intended position based on the recipes. The operators adjust to the desired position and then acknowledgment is sent to the control system.

Vial Detection: Array Sensor

Sensor arrays can capture more information, even with the vial variations. In addition to vial presence detection, the size of the vial and stopper/cap is verified as well. No physical changes are required. The recipe will dictate the sensor values required for the vial type.

Final Inspection: Vision

For label placement and defect detection, vision is the go-to product. The recipe will call up the label parameters to be verified.

Traceability: Vision

Often used in conjunction with final inspection, traceability requires capturing the barcode data from the final vials. There are often multiple 1D and 2D barcodes that must be read. A powerful vision system with a larger field of view is ideal for the changing recipes.

All of these ingredients are best when tied together with IO-Link. This ensures easy implantation with class-leading products. With all these ingredients, it has never been easier to implement operator-guided/verified size change.

Custom Sensors: Let Your Specs Drive the Design

Customized sensors, embedded vision and RFID systems are often requirements for Life Science devices to meet the needs for special detection functions, size constraints and environmental conditions. Customization can dramatically raise costs and you don’t want to pay for stock features, such as an external housings and universal outputs, that are simply not needed. So, it comes down to your specification driving the design. A qualified sensor supplier can create custom orders, allowing your specifications to drive the design, building just what you need and nothing you don’t.

It’s as easy as putting a model together.

The process is fairly straight forward. After reviewing your specifications, the sensor supplier develops a plan to supply a functional prototype for your testing phase. Qualified sensing companies can quickly build prototypes either by starting with a standard product or using standard modules. Both methods have advantages.

Standard Product approach: This is the fastest method to get a prototype up and running. Here, the focus is on providing a solution for the basic sensing/detection application. Once testing confirms the functionally, a custom project is started. The custom project ensures seamless integration into your device. Also, cost control measures can be addressed.

Standard Module approach: This will handle the most demanding applications. When a standard product is not able to meet the basic required functionally, we turn to the base component modules. An ever-growing field of applications are solved by combining options from the hundreds of available modules. While this takes more time, the sensing company can deliver a near final prototype in much less time than if they were creating an internal development.

Qualified sensor companies can easily handle the production side as well. With significant investments in specialized automated manufacturing equipment, production can be scaled to meet varying demands. And as components go obsolete, sustaining engineering projects are routinely handled to maintain availability. This can be disruptive for internal production or contract manufacturers. Sensor companies will take on the responsibility of life-cycle management for years to come. It’s part of their business model.

So, make sure your sensor, embedded vision or RFID supplier has a large model kit to pull from. Your projects will exceed your specification and be completed on time without long-term life-cycle issues.

For more information , visit https://www.balluff.com/en/de/service/services/productbased-service/.

 

Using MicroSpot LEDs for Precise Evaluations in Life Science

Handling microfluidics and evaluating samples based on light is a precise science. And that precision comes from the light source, not the actual detection method. But too many times we see standard LEDs being used in these sensing and evaluation applications. Standard LEDs are typically developed for lighting and illumination applications and require too many ancillary components to achieve a minimum level of acceptability. Fortunately, there is an alternate technology.

First, let’s look at a standard LED. Figure 1 shows a typical red LED. You can see the light emission surface is cluttered with the anode pad (square in the middle) and its bond wire. These elements are fine for applications like long-range sensing, lighting and indications, but for precise, up-close applications they cause disturbances.

Figure 1: Typical red LED showing the intrusion of the anode and bond wire into the light emission

Most notable is the square hole in the middle of the emission pattern. There are two typical methods to reduce the effect of the hole: lensing and apertures. An aperture essentially restricts the emitted light to a corner of the die, substantially reducing the light energy causing difficulties with low-contrast detections. Using a lens only will maintain the light energy, but the beam will have a fixed focused point that is not acceptable for many applications. But even the bond wire produces reflections and causes spurious emissions. These cannot be tolerated with microfluidics as adjacent channels will become involved in the measurement. An additional aperture is typically used to suppress the spurious emissions.

Fortunately, there is an alternative with MicroSpot LEDs. Basically, the anode and emission areas are inverted as shown in the Figure 2 comparison.

2
Figure 2: Comparison of the typical LED with the MicroSpot’s clean, powerful and collimated emission

This eliminates the need for the anode and bond wire to interfere with the emitted light. This produces a clean, powerful and collimated emission that will produce consistent results without additional components. This level of beam control is typically reserved for lasers. However, lasers also require more components, are much larger and cost more. The MicroSpot LED is the best choice for demanding life science applications.

Try the MicroSpot for yourself in select Balluff MICROmote miniature photoelectric sensors.

Learn more at www.balluff.com.

Mini Sensors Add Big Capabilities to Life Science Applications

1Miniaturization is one of the essential requirements for medical instruments and laboratory equipment used in the life science industry. As instruments get smaller and smaller, the sensor components must also become smaller, lighter and more flexible. The photoelectric sensors that were commonly used in general automation and applied in life science applications have met their limitations in size and performance.

2.jpgSensors used in these complex applications require numerous special characteristics such as high-quality optics, unique housing designs, precise LEDs with the best suited wavelength and the ability to be extremely flexible to fit in the extremely small space available. Sensors have been developed to meet the smallest possible installation footprint with the highest optical precision and enough flexibility to be installed where they are needed. These use integrated micro-precision optics that shape and focus the light beam exactly on the object without any undesirable side-effects to achieve the reliability demanded in today’s applications.

Previously many life science applications used conventional plastic fiber optic cables that were often too large and not flexible enough to be routed through the instruments. An alternative to the classic fiber cables is a “wired” fiber with precision micro-optics and extremely flexible cables with essentially no minimum bending radius and no significant coupling losses. Similar to a conventional fiber optic sensor, an external amplifier is required to provide a wide variety of functionalities to solve the demanding applications.

These sensors can be used in applications such as:

  • Precise detection of liquid levels using either attenuation or refraction with a small footprint
  • Reliable detection of transparent objects such as microscope slides or coverslips having various edge shapes
  • Detection of transparent liquids in micro-channels or capillaries
  • Reliable detection of individual droplets
  • Recognition of free-floating micro-bubbles in a tube that are smaller than the tube diameter and that cannot be seen by the human eye
  • Recognition of macro-bubbles that are the diameter of small tubes

For more information on photoelectric sensors that have the capability to meet the demands of today’s life science applications visit www.balluff.com.