Using MQTT Protocol for Smarter Automation

In my previous blog post, “Edge Gateways to Support Real-Time Condition Monitoring Data,” I talked about the importance of using an edge gateway to gather the IoT data from sensors in parallel with a PLC. This was because of the large data load and the need to avoid interfering with the existing machine communications. In this post, I want to delve deeper into the topic and explain the process of implementing an edge gateway.

Using the existing Ethernet infrastructure

One way to collect IoT data with an edge gateway is by using the existing Ethernet infrastructure. With most devices already communicating on an industrial Ethernet protocol, an edge gateway can gather the data on the same physical Ethernet port but at a separate software-defined number associated to a network protocol communication.

Message Queue Telemetry Transport (MQTT)

One of the most commonly used IoT protocols is Message Queue Telemetry Transport (MQTT). It is an ISO standard and has a dedicated software Ethernet port of 1883 and 8883 for secure encrypted communications. One reason for its popularity is that it is designed to be lightweight and efficient. Lightweight means that the protocol requires a minimum coding and it uses low-bandwidth connections.

Brokers and clients

The MQTT protocol defines two entities: a broker and client. The edge gateway typically serves as a message broker that receives client messages and routes them to the appropriate destination clients. A client is any device that runs an MQTT library and connects to an MQTT broker.

MQTT works on a publisher and subscriber model. Smart IoT devices are set up to be publishers, where they publish different condition data as topics to an edge gateway. Other clients, such as PC and data centers, can be set up as subscribers. The edge gateway, serving as a broker receives all the published data and forwards it only to the subscribers interested in that topic.

One client can publish many different topics as well as be a subscriber to other topics. There can also be many clients subscribing to the same topic, making the architecture flexible and scalable.

The edge gateway serving as the broker makes it possible for devices to communicate with each other if the device supports the MQTT protocol. MQTT can connect a wide range of devices, from sensors to actuators on machines to mobile devices and cloud servers. While MQTT isn’t the only way to gather data, it offers a simple and reliable way for customers to start gathering that data with their existing Ethernet infrastructures.

Start Condition Monitoring With Vibration Sensors

IIOT (Industrial internet of things) has gained much traction and attraction in past years. With industries getting their assets online for monitoring purposes and new IO-Link sensors providing a ton of information on a single package, monitoring machines has become economically feasible.

Vibration is one of the most critical metrics regarding the health of machines, providing early detection of potential faults – before they cause damage or equipment failure. But since this is a relatively new field and use case, there is not much information about it. Most customers are confused about where to start. They want a baseline to begin monitoring machines and then finetune them to their use case.

“Vibration is one of the most critical metrics regarding the health of machines…”

One approach to solve this is to hire a vibration expert to determine the baseline and the best location to mount the vibration measuring sensor. Proper setup increases the threshold of getting into condition monitoring as a new user figures out the feasibility of such systems.

I direct my customers to this standardized baseline chart from ISO, so they can determine their own baselines and the best mounting positions for their sensors. The table shows the different standards for severity for different machine classes. These standards detail the baseline vibration and show the best place to mount the sensor based on the machine type.

Click here for more information on the benefits of condition monitoring.