IMTS 2016 Review: IO-Link Enables Industry 4.0 Installations

We have been talking about IO-Link for a long time.  The benefits to manufacturers like “hot-swapping” a smart device.  One of the benefits for machine builder is reducing commissioning time.  So it was not surprising to me to find IO-Link on the exhibit floor at IMTS 2016, but it was surprising how much IO-Link was used on equipment and demonstrations.

Makino IO-Link I/O Hubs

On a cool demo of robotic load and unload of two machining centers from the team at Makino Machine IO-Link was used for I/O applications driving solenoids and collecting sensor inputs.

What is neat about I/O hubs regardless of the brand is the ability to collect many simple discrete sensor inputs and drive outputs over one IO-Link channel.  It can save tim dramatically over traditional hardwired applications.

Beckhoff IO-Link Master for EtherCAT
Beckhoff IO-Link Master for EtherCAT
Molex IO-Link Inter-operability

At Beckhoff they were showing their IO-Link master options for a slice in the PLC.

Molex displayed their Profinet IO-Link master and slave devices like analog converter and digital I/O hubs.  What I liked about their demo is they showed how open and easy the IO-Link technology is to integrate other company’s devices like the Balluff SmartLight.

Klingelnberg IO-Link

In the Klingelnberg booth on one of their flagship machines IO-Link masters and SmartLight were installed on the machine. IO-Link inductive positioning Smart Sensors from Balluff were used for measurement of the chucking position.

And inter-operability was also shown with multiple manufacturer’s process sensors with IO-Link installed tied back to a Profinet master.  Since IO-Link is an open standard with over 90 automation vendors, it was nice to see the inter-operability in action.

Caron Eng Demo of SmartLight

The SmartLight was shown all over the IMTS show due to Caron Engineering’s easy integration into a PC without an industrial network.  Too many booths to name had the SmartLight integrated with the Caron IO-Link Master solution.

The fact that IO-Link can be used with multiple master interfaces and options, really makes it an easy to select and universal choice for a variety of applications.

 

I look forward to seeing what unfolds in the two years before the next IMTS show.  I anticipate there will be a dramatic and continued adoption of IO-Link as it enables and scales Industry 4.0 and IIoT applications.

To see more or join the conversation check out #IMTS2016 on Twitter.

Is IO-Link only for Simplifying Sensor Integration?

PossibilitiesOn several occasions, I was asked what other applications IO-Link is suitable for? Is it only for sensor integration? Well the answer is no! There are several uses for IO-Link and we are just beginning to scratch the surface for what IO-Link can do. In this blog post I will cover at least 7 common uses for IO-Link including sensor integration.
IO-Link in essence provides tremendous flexibility. Each available IO-Link port offers the possibility to connect devices from hundreds of manufacturers to build a resilient distributed modular controls architecture — that is essentially independent of the fieldbus or network. IO-Link is the first standardized sensor/actuator communication protocol as defined in IEC61131-9.

USE-CASE #1: Simplify sensor integration
Multitudes of IO-Link sensors from 100+ manufacturers can be connected using the simple 3-wire M12 prox cables. No shielded cables are required. Additionally, using IO-Link provides a parameterization feature and anti-tampering abilities- on the same 3 wires. The sensor can be configured remotely through a PLC or the controller and all the configuration settings can be stored for re-application when the sensor is replaced. This way, on your dreaded night shift changing complex sensor is just plug-n-play. Recipe changes on the line are a breeze too. For example, if you have an IO-Link color sensor configured to detect a green color and for the next batch you want to start detecting red color- with IO-Link it is simply a matter of sending a parameter for the color sensor – instead of sending a maintenance person to change the settings on the sensor itself — saving valuable time on the line.
color sensors

USE-CASE #2: Simplify analog sensor connections
In one of my previous blogs, “Simplify your existing analog sensor connection”, I detailed how connecting an analog sensor with single or multi-channel analog-to-IO-Link (A/D) converters can eliminate expensive shielded cables and expensive analog cards in the controller rack and avoids all the hassle that comes with the analog sensors.

USE-CASE #3: Simplify RFID communication
IO-Link makes applications with RFID particularly intriguing because it takes all the complexity of the RFID systems out for simple applications such as access control, error-proofing, number plate tracking and so on. In an open port on IO-Link master device you can add read/write or read only RFID heads and start programming. A couple of things to note here is this IO-Link based RFID is geared for small data communication where the data is about 100-200 bytes. Of-course if you are getting into high volume data applications a dedicated RFID is preferred. The applications mentioned above are not data intensive and IO-Link RFID is a perfect solution for it.

USE-CASE #4: Simplify Valve Integration
valve manifoldTypically valve banks from major manufacturers come with a D-sub connection with 25 pins. These 25 wires are now required to be routed back to the controls cabinet, cut, stripped, labeled, crimped and then terminated. The other expensive option is to use a network node on the valve bank itself, which requires routing expensive network cable and power cable to the valve bank. Not to mention the added cost for the network node on the valve bank. Several manufacturers now offer IO-Link on the valve manifold itself simplifying connection to 4-wires and utilizing inexpensive M12 prox cables. If you still have the old D-sub connector, an IO-Link to 25-pin D-sub connectors may be a better solution to simplify the valve bank installation. This way, you can easily retrofit your valve bank to get the enhanced diagnostics with IO-Link without much cost. Using IO-Link valve connectors not only saves time on integration by avoiding the labor associated with wire routing, but it also offers a cost effective solution compared to a network node on the valve manifold. Now you can get multiple valve manifolds on the single network node (used by the IO-Link master) rather than providing a single node for each valve manifold in use.

USE-CASE #5 Simplify Process Visualization
Who would have thought IO-Link can add intelligence to a stack light or status indicator? Well, we did. Balluff introduced an IO-Link based fully programmable LED tower light system to disrupt the status indicator market. The LED tower light, or SmartLight, uses a 3-wire M12 prox cable and offers different modes of operations such as standard stack light mode with up to 5 segments of various color lights to show the status of the system, or as a run-light mode to display particular information about your process such as system is running but soon needs a mechanical or electrical maintenance and this is done by simply changing colors of a running segment or the background segment. Another mode of operation could be a level mode where you can show the progress of process or show the fork-lift operators that the station is running low on parts. Since the Smartlight uses LEDs to show the information, the colors, and the intensity of the light can be programmed. If that is not enough you can also add a buzzer that offers programmable chopped, beep or continuous sound. The Smartlight takes all of the complexity of the stack light and adds more features and functions to upgrade your plant floor.

USE-CASE #6: Non-contact connection of power and data exchange
Several times on assembly lines, a question is how to provide power to the moving pallets to energize the sensors and I/O required for the operation? When multi-pin connectors are used the biggest problem is that the pins break by constantly connecting or disconnecting. Utilizing an inductive coupling device that can enable transfer of power and IO-Link data across an air-gap simplifies the installation and eliminates the unplanned down-time. With IO-Link inductive couplers, up to 32 bytes of data and power can be transferred. Yes you can activate valves over the inductive couplers!  More on inductive coupling can be found on my other series of blogs “Simple Concepts for Complex Automation”

USE-CASE #7: Build flexible high density I/O architectures.
IO PointsHow many I/O points are you hosting today on a single network drop? The typical answer is 16 I/O points. What happens when you need one additional I/O point or the end-user demands 20% additional I/O points on the machine? Until now, you were adding more network or fieldbus nodes and maintaining them. With I/O hubs powered by IO-link on that same M12 4-wire cable, now each network node can host up to 480 I/O points if you use 16 port IO-Link masters. Typically most of our customers use 8-port IO-Link masters and they have the capacity to build up to 240 configurable I/O on a single network drop. Each port on the I/O hub hosts two channels of I/O points with each channel configurable as input or output, as normally open or normally closed. Additionally, you can get diagnostics down to each port about over-current or short-circuit. And the good thing is, each I/O hub can be about 20m away.

In a nutshell, IO-Link can be used for more than just simplifying sensor integration and can help significantly reduce your costs for building flexible resilient controls architectures. Still don’t believe it? Contact us and we can work through your particular architecture to see if IO-Link offers a viable option for you on your next project.

Learn more about our IO-Link solutions at www.balluff.com/io-link

1 Visual Way to Improve Operator Performace

Many manufacturers I talk to are excited about the possibilities that our new Smart Light technology, used in level mode, brings to their production or machines.  Here’s a video if you havent seen it yet:

It works over virtually any industrial network with an open standard called IO-Link, which I’ve discussed many times in previous posts.

What I’m really impressed with is the number of people integrating the level mode as a quick and easy way to give instantaneous feedback to an operator on their performance to a quota or as a count-down timer.  Here you can see in the middle of the right photo a bright green bar light just to the left of the red kanban rack.  There are multiple of these lights in this image.

Tesla Motors Blog – Factory Upgrade

This light is a five zone Smart Light operating in level mode.  As the cycle time winds down, the light decreases in value until there is no more time, at that point it flashes bright red to notify the operator to cycle to the next vehicle.  It keeps the production on track and helps operators know quickly and easily how much time remains.  What I’ve been told is nice about this is how bright the light is and that it is easily install-able without a controls cabinet or slice i/o j-box like you can see in the photo.  Others like it because it makes the data visual from all over, where HMIs require you to stand right in front of them for information.

So if you are trying to think about ways to visualize data in your process or production to operators or managers, there are many others out there already using Smart Light for that application. Check it out.

Stop Industrial Network Failures With One Simple Change

Picture1

It’s the worst when a network goes down on a piece of equipment.  No diagnostics are available to help troubleshooting and all communication is dead.  The only way to find the problem is to physically and visually inspect the hardware on the network until you can find the culprit.  Many manufacturers have told me over the past few months about experiences they’ve had with down networks and how a simple cable or connector is to blame for hours of downtime.

2013-08-19_Balluff-IO-Link_Mexico_Manufactura-de-Autopartes_healywBy utilizing IO-Link, which has been discussed in these earlier blogs, and by changing the physical routing of the network hardware, you can now eliminate the loss of communication.  The expandable architecture of IO-Link allows the master to communicate over the industrial network and be mounted in a “worry-free” zone away from any hostile environments.  Then the IO-Link device is mounted in the hostile environment like a weld cell and it is exposed to the slag debris and damage.  If the IO-Link device fails due to damage, the network remains connected and the IO-Link master reports detailed diagnostics on the failure and which device to replace.  This can dramatically reduce the amount of time production is down.  In addition the IO-Link device utilizes a simple sensor cable for communication and can use protection devices designed for these types of cables.  The best part of this is that the network keeps communicating the whole time.

If you are interested in learning more about the benefits that IO-Link can provide to manufacturers visit www.balluff.us.

2 Simple Ways to Protect from Arc Flash Hazards

If you are a manager at any level of a manufacturing facility, I hope you are aware of the dangers of arc flash.  For those who are not aware, “an arc flash, also called arc blast or arc fault is a type of electrical explosion that results from a low-impedance connection to ground or another voltage phase in an electrical system.”  Typically this does not occur in 120V situations, but can occur in 480V+ installations if proper precautions are not taken.  Employees can be severely injured or even killed when an accident occurs while working with these kinds of electrical systems.   There are many standards  like OSHA, IEEE and NFPA that regulate these types of situations to provide a safe working environment for the employee.  In addition to those standards, I would propose two simple changes to controls architecture and design to help limit the exposure to working inside an electrical cabinet.

Continue reading “2 Simple Ways to Protect from Arc Flash Hazards”

“Gorilla” Warfare in Metalforming – How to Couple Stamping Die Segments Without a Hard Wire Connection

This post will show how to couple stamping die segments without a hard wire connection, AND prevent the potential gorilla-like effects of forklifts during die change! Have you ever experienced or heard about a forklift removing a stamping die with the giant Mil-Spec connector still attached (OOPS!!!!)? It certainly isn’t a pretty sight. Below is a typical Mil-spec connector, they aren’t cheap or easy to re-wire.

Or, have you ever tried to figure out a way to add sensors in very complex progressive die segments that will facilitate rapid die change?  If so, I have an answer for you with a non-contact connector system. Take a peek at the picture below.

Continue reading ““Gorilla” Warfare in Metalforming – How to Couple Stamping Die Segments Without a Hard Wire Connection”

IO-Link is the USB for Industrial Automation

I’ve recently heard this comparison used a number of times and the parallels are quite interesting.  USB was designed to help standardize a dizzying array of connectors and configurations of supplementary devices that developed during the age of the Compaq vs IBM.  It always took days to configure and establish communication between devices and then finally you could never get all the functionality that the device promised because of your PC’s specific configuration.  USB revolutionized the personal computer by allowing for a standard interface for simple devices from hard-drives to keyboard lights, and best of all by offering a device drivers the functionality promised could be delivered.  If the device broke, you bought a new one, plugged it in and it worked.

Continue reading “IO-Link is the USB for Industrial Automation”

Distributed Modular I/O Demo on Demand!

Everyone likes things on demand right?  Movies, TV shows, chocolate, you name it.  My good friend, John Harmon, has prepared a YouTube video so that you have at your fingertips an on-demand presentation on Distributed Modular I/O.  It is a great overview of the available functionality of Distributed Modular I/O and what kinds of control products that are available utilizing this technology.  I realize the video is seven and a half minutes, which is pretty long for a web video, but I think he does an excellent job of keeping your attention and demonstrating the value of this technology.  Grab a soda and your favorite chocolate bar, put your phone on silent, and hit play on this excellent presentation.

Continue reading “Distributed Modular I/O Demo on Demand!”

A 3-Step Plan to Improve Your Design of Pneumatic Systems

I’ve been talking pneumatic systems (valves, cylinders, actuators, etc.) recently with my customers and I’m finding among these engineers some common pains coming out of the system design.  It seems that many people are researching networked valve islands with I/O built-in.  These seem to be a great way to consolidate lots of I/O into one IP address, but there are some new issues cropping up similar to the above photo:

  • When assembling these at a machine builder the routing of cables with piping is more cumbersome  with cables hanging off the valves, larger cable tray installations  and large amounts of piping all running to the same spot.
  • For machine builders, with all of the valves centralized in one place, the pneumatic lines have to be longer.  This causes many issues such as slower responsiveness due to air volume, air inertia, and lower air quality.
  • When trying to perform maintenance at an end-user, it becomes a nightmare to troubleshoot with a cluster of cables and pipes.  The zip-tied and clean runs installed by the machine builder are cut, tangled and re-routed as the machine ages and becomes more difficult to troubleshoot.
  • Also at end users, if the manifold needs to be expanded, updated, retrofitted with new valves or I/O, there are big hurdles to jump when doing this: re-piping the valve due to mounting position shifting or even having to edit and repair code in the PLC to adapt to new bitmaps generated by the new valve manifold configuration.
  • When closing the loop with magnetic field sensors mounted on the cylinders, typically reed switches are used which are prone to failure.  In addition, these switches typically have two sensors & cables per actuator to give extend or retract position, these cables cause larger cable trays and long cable runs back to the centralized manifold and I/O.

Continue reading “A 3-Step Plan to Improve Your Design of Pneumatic Systems”

Machine Mount I/O: Get out of the Cabinet

In April, Jim Montague of Control Design wrote an interesting article on Machine Mount I/O entitled “Machine-Mount I/O Go Everywhere.”  I think the article makes some very good points as to the value of why someone wants to move from inside an enclosure, or controls cabinet, to mounting I/O products directly on the machine.

He summarizes, with the help of a number of industry experts, the below points:

  • Same or Better control performance out of IP67 products versus IP20 products.  
    • Installation time alone “is reduced by a factor of 5 to 10”
    • Assemble more controls equipment faster with the same people & workspace
  • Smaller & Simpler components take up less real-estate on the machine