Exploring Industrial Cameras: A Guide for Engineers in Life Sciences, Semiconductors, and Automotive Fields 

In the bustling landscape of industrial camera offerings, discerning the parameters that genuinely define a camera’s worth can be a daunting task. This article serves as a compass, steering you through six fundamental properties that should illuminate your path when selecting an industrial camera. While the first three aspects play a pivotal role in aligning with your camera needs, the latter three hold significance if your requirements lean towards unique settings, external conditions, or challenging light environments.

    1. Resolution: unveiling the finer details. Imagine your camera as a painter’s canvas and resolution as the number of dots that bring your masterpiece to life. In simple terms, resolution is the number of pixels forming the image, determining its level of detail. For instance, a camera labeled 4096 x 3008 pixels amounts to a pixel symphony of around 12.3 million, or 12.3 megapixels. Yet don’t be swayed solely by megapixels. Focus on the pixel count on both the horizontal (X) and vertical (Y) axes. A 12-megapixel camera might sport configurations like 4000 x 3000 pixels, 5000 x 2400 pixels, or 3464 x 3464 pixels, each tailor-made for your observation intent and image format.
    1. Frame rate: capturing motion in real-time. The frame rate, akin to a movie’s frame sequence, dictates how swiftly your camera captures moving scenes. With figures like 46.5/74.0/135 denoting your camera’s capabilities, it reveals the number of images taken in different modes. Burst mode captures a rapid series of images, while Max. streaming ensures a consistent flow despite interface limitations. The elegance of Binning also plays a role, making it an adept solution for scenarios craving clarity in dim light and minimal noise.
    1. Connectivity: bridging the camera to your system. The camera’s connectivity interfaces, such as USB3 and GigE, shape its rapport within your system.

USB3 Interface: Like a speedy expressway for data, USB3 suits real-time applications like quality control and automation. Its straightforward nature adapts to diverse setups.

GigE Interface: This Ethernet-infused interface excels in robust, long-distance connections. Tailored for tasks like remote monitoring and industrial inspection, it basks in Ethernet’s reliability. Choosing the best fit: USB3 facilitates swift, direct communication, while GigE emerges triumphant in extended cable spans and networking. Your choice hinges on data velocity, distance, and infrastructure compatibility.

    1. Dynamic range: capturing radiance and shadow. Imagine your camera as an artist of light, skillfully capturing both dazzling radiance and somber shadows. Dynamic range defines this ability, representing the breadth of brightness levels the camera can encapsulate. Think of it as a harmony between light and dark. Technical folks may refer to it as the Ratio of Signal to Noise. It’s influenced by the camera’s design and the sensor’s performance. HDR mode is also worth noting, enhancing contrast by dividing the integration time into phases, each independently calibrated for optimal results.
    1. Sensitivity: shining in low-light environments. Your camera’s sensitivity determines its prowess in low-light scenarios. This sensitivity is akin to the ability to see in dimly lit spaces. Some cameras excel at this, providing a lifeline in settings with scarce illumination. Sensitivity’s secret lies in the art of collecting light while taming noise, finding the sweet spot between clear images and environmental challenges.
    1. Noise: orchestrating image purity. In the world of imagery, noise is akin to static in an audio recording—distracting and intrusive. Noise takes multiple forms and can mar image quality:

Read noise: This error appears when converting light to electrical signals. Faster speeds can amplify read noise, affecting image quality. Here, sensor design quality is a decisive factor.

Dark current noise: Under light exposure, sensors can warm up, introducing unwanted thermal electrons. Cooling methods can mitigate this thermal interference.

Patterns/artifacts: Sometimes, images bear unexpected patterns or shapes due to sensor design inconsistencies. Such artifacts disrupt accuracy, especially in low-light conditions. By understanding and adeptly managing these noise sources, CMOS industrial cameras have the potential to deliver superior image quality across diverse applications.

In the realm of industrial cameras, unraveling the threads of resolution, frame rate, connectivity, dynamic range, sensitivity, and noise paints a vivid portrait of informed decision-making. For engineers in life sciences, semiconductors, and automotive domains, this guide stands as a beacon, ushering them toward optimal camera choices that harmonize with their unique demands and aspirations.

Buying a Machine Vision System? Focus on Capabilities, Not Cost

Gone are the days when an industrial camera was used only to take a picture and send it to a control PC. Machine vision systems are a much more sophisticated solution. Projects are increasingly demanding image processing, speed, size, complexity, defect recognition and so much more.

This, of course, adds to the new approach in the field of software, where deep learning and artificial intelligence play a bigger and bigger role. There is often a lot of effort behind improved image processing, however,  some people, if only a few, have realized that part of it can already be processed by that little “dummy” industrial camera.

I will try to briefly explain to you in the next few paragraphs how to achieve this in your application. Thanks to that, you will be able to get some of these benefits:

  • Reduce the amount of data
  • Relieve the entire system
  • Generate the maximum performance potential
  • Simplify the hardware structure
  • Reduce the installation work required
  • Reduce your hardware costs
  • Reduce your software costs
  • Reduce your development expenses

How to achieve it?  

Try to use more intelligent industrial cameras, which have a built-in internal memory sometimes called a buffer. Together with FPGA (field programmable gate array) they will do a lot of work that will appreciate your software for image processing. These functions are often also called pre-processing features.

What if you have a project where the camera must send images much faster than the USB or Ethernet interface allows?

For simple cameras, this would mean using a much faster interface, which of course would make the complete solution more expensive. Instead, you can use the Smart Framer Recall function in standard USB and GigE cameras, which generates small preview images with reduced resolution (thumbnails) with an extremely accelerated number of frames per second, which are transferred to the host PC with IDs. At the same time, the corresponding image in full resolution is archived in the camera’s image memory. If the image is required in full resolution, the application sends a request and the image is transferred in the same data stream as the preview image.

The function is explained in this video.

Is there a simpler option than a line scan camera? Yes!

Many people struggle to use line scan cameras and it is understandable. They are not easy to configurate, are hard to install, difficult to properly set and few people can modify them. You can use an area scan camera in line scan mode. The biggest benefit is standard interface: USB3 Vision and GigE Vision instead of CoaXPress and Cameralink. This enables inspection of round/rotating bodies or long/endless materials at high speed (like line scan cameras). Block scan mode acquires an Area of Interest (AOI) block which consists of several lines. The user defines the number of AOI blocks which are used to create one image. This minimizes the overhead, which you would have instead when transferring AOI blocks as single images using the USB3 Vision and GigE Vision protocols.

The function is explained in this video.

Polarization has never been easier

Sony came with a completely new approach to — a polarized filter . Until this new approach was developed, everyone just used a polarization filter in front of the lens and combined it with polarized lighting. With the polarized filter, above the pixel array is a polarizer array and each pixel square contains 0°, 45°, 90°, and 135° of polarization.


What is the best part of it? It doesn’t matter if you need a color or monochrome version. There are at least 5️ applications when you want to use it:

  • Remove reflection – > multi-plane surfaces or bruise/defect detection
  • Visual inspection – > detect fine scratches or dust
  • Contrast improvement -> recognize similar objects or colors
  • 3D/Stress recognition -> quality analysis
  • People/vehicle detection -> using your phone while driving

Liquid lens is very popular in smart sensor technology. When and why do you want to use it with an Industrial camera?  


Liquid lens is a single optical element like a traditional lens made from glass. However, it also includes a cable to control the focal length. In addition, it contains a sealed cell with water and oil inside. The technology uses an electrowetting process to achieve superior autofocus capabilities.

Benefits to the traditional lenses are obvious. It doesn’t have any moving mechanical parts. Thanks to that, they are highly resistant to shocks and vibrations. Liquid lens is a perfect fit for applications where you need to observe or inspect objects with different sizes and/or working distances and you need to react very quickly. One  liquid lens can do the work of multiple-image systems.

To connect the liquid lens, it requires the RS232 port in the camera plus a DC power from 5 to 24 Volt. An intelligent industrial camera is able to connect with the camera directly and the lens uses the power supply of the camera.