In-Cylinder Position Sensing in Electrically Conductive Hydraulic Fluids

The standard for hydraulic fluid in the industry is mineral oil, which is a dielectric medium that does not conduct electricity. Yet environmental concerns have led to the search for alternatives that are less harmful in case of leaks and spills. One development is biodegradable oils, typically with biological origins, often called “bio-oils” for short. They behave in many ways like mineral oil with a key difference in that they can be electrically conductive.

Another alternative hydraulic fluid is water-glycol mixtures, commonly known as the anti-freeze found in your liquid-cooled automobile engine. Water-glycol solutions are used for several reasons, including environmental concerns but more often conditions of extreme heat or extreme cold. They have much lower viscosity than oil, and there are several fluid power application considerations as a result, but water-glycol mixtures, like bio-oils, are electrically conductive.

Image2

So, when it comes to cylinder position sensing, why should we care whether or not the hydraulic fluid is electrically conductive? Well, because it could come back to bite us if we put an incompatible position sensing technology into a cylinder that is filled with a conductive fluid.

I recently met an engineer who’d run into this exact situation. A hydraulic cylinder was ordered from the manufacturer with an “integrated position feedback sensor.” The feedback sensor turned out to be a resistive potentiometric type, in other words, a linear potentiometer or “pot.” The entire length of the resistive material is “wetted” inside the cylinder, along with the traveling “wiper” that moves with the piston. In typical applications with non-conductive, mineral-based hydraulic fluid, this works fine (although linear pots do tend to be somewhat fragile and do wear out over time). However, when the resistive material and wiper is wetted in a conductive liquid, all kinds of wrong start happening. The signal becomes very erratic, unstable, and lacks resolution and repeatability. This is because the fluid is basically short-circuiting the operation of the open-element linear potentiometer.

This caused quite a headache for the engineer’s customer and subsequently for the engineer. Fortunately, a replacement cylinder was ordered, this time with a non-contact magnetostrictive linear position sensor. The magnetostrictive sensor is supplied with a pressure-rated, protective stainless steel tube that isolates the electrical sensing element from the hydraulic medium. The position marker is a magnet instead of a wiper, which the sensor can detect through the walls of the stainless steel pressure tube. So, a magnetostrictive sensor is absolutely unaffected by the electrical properties of the hydraulic medium.

A magnetostrictive linear position sensor carries a lot of performance and application advantages over linear pots that make them a superior technology in most applications, but when it comes to conductive hydraulic fluids they are definitely the preferred choice.

To learn more about linear position sensors visit www.balluff.com.

3 Steps to Choosing the Right In-Cylinder Position Sensor

I recently ran across an interesting article that explored some of the factors involved in selecting hydraulic cylinders.  The article, entitled “3 Steps to Choosing the Right Hydraulic Cylinder” was very informative and helpful.  But what if you need a “smart cylinder”, i.e. a cylinder that can provide absolute position feedback?  Just as it’s important to select the proper cylinder to match the mechanical requirements of your application, it’s also important to select the right sensor to meet the electrical requirements.

So, to that end, I’d like to piggyback on the cylinder selection article with this one, which will look at 3 steps to choosing the right in-cylinder position sensor.  In particular, I’ll be talking about rod-type magnetostrictive linear position sensors that are designed to be installed into industrial hydraulic cylinders to provide absolute position feedback.

Before we get to step 1, let’s talk about the cylinder itself.  So-called smart cylinders are typically prepped by the cylinder manufacturer to accept a magnetostrictive position transducer.  Prepping consists of gun drilling the cylinder rod, machining a port on the endcap, and installing a magnet on the face of the piston.  For more information about smart cylinders, consult with your cylinder supplier.

Step 1 – Choose the Required Stroke Length

The stroke length of the position sensor usually matches the stroke length of the cylinder.  When specifying a position sensor, you usually call out the working electrical stroke.  Although the overall physical length of the sensor is going to be longer than the working electrical stroke, this is usually not a concern because the cylinder manufacturer accounts for this added length when prepping the cylinder.

Continue reading “3 Steps to Choosing the Right In-Cylinder Position Sensor”