Workers Wanted: Building a Team to Thrive in Industry 4.0

Manufacturers enjoy talking about the new technologies available as we speed ahead to Industry 4.0. And while it is true (very true) that improved technologies and the increase in data those new technologies provide are drivers for success, it is only with the right people in place that business can thrive.

Over the next decade, 4.6 million manufacturing jobs will likely be needed, and 2.4 million are expected to go unfilled due to the skills gap. Moreover, according to a recent report, the lack of qualified talent could take a significant bite out of economic growth, potentially costing as much as $454 billion from manufacturing GDP in 2028 alone. (Source: Deloitte and The Manufacturing Institute)

But this isn’t a future problem. It is today’s problem and it is already negatively impacting the bottom line for many businesses. During the first quarter of 2019, more than 25% of manufacturers had to turn down new business opportunities due to a lack of workers, according to a report from the National Association of Manufacturers (NAM).

Manufacturers need to respond to this issue. NOW. We need to start by changing the perception of what it means to work in smart manufacturing. We need to show potential workers what is happening inside our plants and what a career in manufacturing can look like — good pay, clean facilities, challenging work and advancement opportunities.

We can start this by taking simple steps like participating in Manufacturing Day activities, opening our doors to the public and letting them see what we do. Show them how manufacturing has changed. Manufacturing Day is held the first Friday of October each year to help dispel common misconceptions about manufacturing in a coordinated effort and while it is growing, still not enough businesses are involved.

We can’t solve our labor problems in a day. We also need to embrace new talent pipelines, work with schools to encourage students receive the basic training needed to join our teams, create co-op and intern opportunities, invest in training, and adapt our culture to better appeal to the younger generations we need to join us.

Our younger generations are highly technical. They don’t know of a world without technology and automation. Their ability isn’t the issue.  We need to convince them that they can find success and rewarding careers in manufacturing and then help then gain the skills to become productive members of our teams.

Tracking and Traceability in Mobility: A Step Towards IIoT

In today’s highly competitive automotive environment, it is becoming increasingly important for companies to drive out operating costs in order to ensure their plants maintain a healthy operating profit.

Improved operational efficiency in manufacturing is a goal of numerous measures. For example, in Tier 1 automotive parts manufacturing it is common place to have equipment that is designed to run numerous assemblies through one piece of capital equipment (Flexible Manufacturing). In order to accommodate multiple assemblies, different tooling is designed to be placed in this capital equipment. This reduces required plant floor real-estate and the costs normally required for unidimensional manufacturing equipment. However, with this flexibility new risks are introduced, such as running the machine with incorrect tooling which can cause increased scrap levels, incorrect assembly of parts and/or destruction/damage of expensive tooling, expedited freight, outsourcing costs, increased manpower, sorting and rework costs, and more.

Having operators manually enter recipes or tooling change information introduces the Human Error of Probability (HEP).  “The typical failure rates in businesses using common work practices range from 10 to 30 errors per hundred opportunities. The best performance possible in well managed workplaces using normal quality management methods are failure rates of 5 to 10 in every hundred opportunities.” (Sondalini)

Knowing the frequency of product change-over rates, you can quickly calculate the costs of these potential errors. One means of addressing this issue is to create Smart Tooling whereby RFID tags are affixed on the tooling and read/write antennas are mounted on the machinery and integrated into the control architecture of the capital equipment. The door to a scalable solution has now been opened in which each tool is assigned a unique ID or “license plate” identifying that specific tooling. Through proper integration of the capital equipment, the plant can now identify what tooling is in place at which OP station and may only run if the correct tooling is confirmed in place. In addition, one can then move toward predictive maintenance by placing process data onto the tag itself such as run time, parts produced, and tooling rework data. Collection and monitoring of this data moves the plant towards IIoT and predictive maintenance capabilities to inform key personnel when tooling is near end of life or re-work requirement thus contributing to improved OEE (Overall Equipment Effectiveness) rates.

Capture

For more information on RFID, visit www.balluff.com.

*Source: Mike Sondalini, Managing Director, Lifetime Reliability Solutions, Article: Unearth the answers and solve the causes of human error in your company by understanding the hidden truths in human error rate tables

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orients them correctly and then feeds them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

How flexible inspection capabilities help meet customization needs and deliver operational excellence

As the automotive industry introduces more options to meet the growing complexities and demands of its customers (such as increased variety of trim options) it has rendered challenges to the automotive manufacturing industry.

Demands of the market filter directly back to the manufacturing floor of tier suppliers as they must find the means to fulfill the market requirements on a flexible industrial network, either new or existing. The success of their customers is dependent on the tier supplier chain delivering within a tight timeline. Whereby, if pressure is applied upon that ecosystem, it will mean a more difficult task to meet the JIT (just in time) supply requirements resulting in increased operating costs and potential penalties.

Meeting customer requirements creates operational challenges including lost production time due to product varieties and tool change time increases. Finding ways to simplify tool change and validate the correct components are placed in the correct assembly or module to optimize production is now an industry priority. In addition, tracking and traceability is playing a strong role in ensuring the correct manufacturing process has been followed and implemented.

How can manufacturing implement highly flexible inspection capabilities while allowing direct communication to the process control network and/or MES network that will allow the capability to change inspection characteristics on the fly for different product inspection on common tooling?

Smart Vision Inspection Systems

Compact Smart Vision Inspection System technology has evolved a long way from the temperamental technologies of only a decade ago. Systems offered today have much more robust and simplistic intuitive software tools embedded directly in the Smart Vision inspection device. These effective programming cockpit tools allow ease of use to the end user at the plant providing the capability to execute fast reliable solutions with proven algorithm tools. Multi-network protocols such as EthernetIP, ProfiNet, TCP-IP-LAN (Gigabit Ethernet) and IO-LINK have now come to realization. Having multiple network capabilities delivers the opportunity of not just communicating the inspection result to the programmable logic controller (via process network) but also the ability to send image data independent of the process network via the Gigabit Ethernet network to the cloud or MES system. The ability to over-lay relevant information onto the image such as VIN, Lot Code, Date Code etc. is now achievable.  In addition, camera housings have become more industrially robust such as having aluminum housings with an ingress protection rating of IP67.

Industrial image processing is now a fixture within todays’ manufacturing process and is only growing. The technology can now bring your company a step closer to enabling IIOT by bringing issues to your attention before they create down time (predictive maintenance). They aid in reaching operational excellence as they uncover processing errors, reduce or eliminate scrap and provide meaningful feedback to allow corrective actions to be implemented.

How TSN boosts efficiency by setting priorities for network bandwidth

As manufacturers move toward Industry 4.0 and the Industrial Internet of Things (IIoT), common communication platforms are needed to achieve the next level of efficiency boost. Using common communication platforms, like Time-Sensitive Networking (TSN), significantly reduces the burden of separate networks for IT and OT without compromising the separate requirements from both areas of the plant/enterprise.

TSN is the mother of all network protocols. It makes it possible to share the network bandwidth wisely by allocating rules of time sensitivity. For example, industrial motion control related communication, safety communication, general automation control communication (I/O), IT software communications, video surveillance communication, or Industrial vision system communication would need to be configured based on their time sensitivity priority so that the network of switches and communication gateways can effectively manage all the traffic without compromising service offerings.

If you are unfamiliar with TSN, you aren’t alone. Manufacturers are currently in the early adopter phase. User groups of all major industrial networking protocols such as ODVA (CIP and EtherNet/IP), PNO (for PROFINET and PROFISAFE), and CLPA (for CC-Link IE) are working toward incorporating TSN abilities in their respective network protocols. CC-Link IE Field has already released some of the products related to CC-Link IE Field TSN.

With TSN implementation, the current set of industrial protocols do not go away. If a machine uses today’s industrial protocols, it can continue to use that. TSN implementation has some gateway modules that would allow communicating the standard protocols while adding TSN to the facility.

While it would be optimal to have one universal protocol of communication across the plant floor, that is an unlikely scenario. Instead, we will continue to see TSN flavors of different protocols as each protocol has its own benefits of things it does the best. TSN allows for this co-existence of protocols on the same network.

 

RFID: Using Actionable Data to Make Critical Decisions

While RFID technology has been in use since the 1950s, wide-spread implementation has come in waves over the years. Beginning with military applications where it was used to identify friend or foe aircraft, to inventory control in the retail industry, and now to the manufacturing space where it is being used to manage work in process, track assets, control inventory, and aid with automatic replenishment.

The bottom line is RFID is critical in the manufacturing process. Why? Because, fundamentally, it provides actionable data that is used to make critical decisions. If your organization has not yet subscribed to RFID technology then it is getting ready to. This doesn’t mean just in the shipping and receiving area.  Wide-spread adoption is happening on the production line, in the tool room, on dies, molds, machine tools, on AGV’s, on pallets, and so much more.

Not an RFID expert? It’s ok. Start with a quick overview.

Learn about the fundamentals of a passive RFID system here.

In the past, controls engineers, quality assurance managers, and maintenance supervisors were early adopters because RFID played a critical role in giving them the data they needed. Thanks to global manufacturing initiatives like Smart Factory, Industry 4.0, the Industrial Internet of things (IIOT) and a plethora of other manufacturing buzz words, CEOs, CFOs, and COOs are driving RFID concepts today. So, while the “hands-on” members of the plant started the revolution, the guys in the corner offices quickly recognized the power of RFID and accelerated the adoption of the technology.

While there is a frenzy in the market, it is important to keep a few things in mind when exploring how RFID can benefit your organization:

  • Choose your RFID partner based on their core competency in addressing manufacturing applications
  • Make sure they have decades of experience manufacturing and implementing RFID
  • Have them clearly explain their “chain of support” from local resources to experts at the HQ.
  • Find a partner who can clearly define the benefits of RFID in your specific process (ROI)
  • Partner with a company that innovates the way their customers automate

How IO-Link is Revolutionizing Overall Equipment Efficiency

Zero downtime.  This is the mantra of the food and beverage manufacturer today.  The need to operate machinery at its fullest potential and then increase the machines’ capability is where the demands of food and beverage manufacturers is at today.  This demand is being driven by smaller purchase orders and production runs due to e-commerce ordering, package size variations and the need for manufacturers to be more competitive by being flexible.

Using the latest technology, like IO-Link, allows manufacturers to meet those demands and improve their Overall Equipment Efficiency (OEE) or the percentage of manufacturing time that is truly productive.  OEE has three components:

  1. Availability Loss
    1. Unplanned Stops/Downtime – Machine Failure
    2. Planned Downtime – Set up and AdjustmentsS
  2. Performance Loss
    1. Small Stops – Idling and Minor Stops
    2. Slow Cycles – Reduced Speed
  3. Quality Loss
    1. Production Rejects – Process Defects
    2. Startup Rejects – Reduced Yield

IO-Link is a smart, easy and universal way to connect devices into your controls network.

The advantage of IO-Link is that it allows you to connect to EtherNet/IP, CC-Link & CC-LinkIE Field, Profinet & Profibus and EtherCAT & TCP/IP regardless of the brand of PLC.  IO-Link also allows you to connect analog devices by eliminating traditional analog wiring and provides values in actual engineering units without scaling back at the PLC processor.

Being smart, easy and universal, IO-Link helps simplify controls architecture and provides visibility down to the sensor and device.

IO-Link communicates the following:

  • Process data (Control, cyclical communication of process status)
  • Parameter data (Configuration, messaging data with configuration information)
  • Event data (Diagnostics, Communication from device to master (diagnostics/errors )

This makes it the backbone of the Smart Factory as shown in the graphic below.

 

IO-Link Simplifies the Controls Architecture

IO-Link OEE1

IO-Link OEE2

The Emergence of Device-level Safety Communications in Manufacturing

Manufacturing is rapidly changing, driven by trends such as low volume/high mix, shorter lifecycles, changing labor dynamics and other global factors. One way industry is responding to these trends is by changing the way humans and machines safely work together, enabled by updated standards and new technologies including safety communications.

In the past, safety systems utilized hard-wired connections, often resulting in long cable runs, large wire bundles, difficult troubleshooting and inflexible designs. The more recent shift to safety networks addresses these issues and allows fast, secure and reliable communications between the various components in a safety control system. Another benefit of these communications systems is that they are key elements in implementing the Industrial Internet of Things (IIoT) and Industry 4.0 solutions.

Within a typical factory, there are three or more communications levels, including an Enterprise level (Ethernet), a Control level (Ethernet based industrial protocol) and a Device/sensor level (various technologies). The popularity of control and device level industrial communications for standard control systems has led to strong demand for similar safety communications solutions.

Safety architectures based on the most popular control level protocols are now common and often reside on the same physical media, thereby simplifying wiring and control schemes. The table, below, includes a list of the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

Ethernet Based Safety Protocol Ethernet Based Control Protocol Governing Organization
CIP Safety Ethernet IP Open DeviceNet Vendor Association (ODVA)
PROFISafe PROFINET PROFIBUS and PROFINET International (PI)
Fail Safe over EtherCAT (FSoE) EtherCAT EtherCAT Technology Group
CC-Link IE Safety CC-Link IE CC-Link Partner Association
openSAFETY Ethernet POWERLINK Ethernet POWERLINK Standardization Group (EPSG)

 

These Ethernet-based safety protocols are high speed, can carry fairly large amounts of information and are excellent for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Ethernet is familiar to most customers, and these protocols are open and supported by many vendors and device suppliers – customers can create systems utilizing products from multiple suppliers. One drawback, however, is that devices compatible with one protocol are not compatible with other protocols, requiring vendors to offer multiple communication connection options for their devices. Other drawbacks include the high cost to connect, the need to use one IP address per connected device and strong influence by a single supplier over some protocols.

Device level safety protocols are fairly new and less common, and realize many of the same benefits as the Ethernet-based safety protocols while addressing some of the drawbacks. As with Ethernet protocols, a wide variety of safety devices can be connected (often from a range of suppliers), wiring and troubleshooting are simplified, and more data can be gathered than with hard wiring. The disadvantages are that they are usually slower, carry much less data and cover shorter distances than Ethernet protocols. On the other hand, device connections are physically smaller, much less expensive and do not use up IP addresses, allowing the integration into small, low cost devices including E-stops, safety switches, inductive safety sensors and simple safety light curtains.

Device level Safety Protocol Device level Standard Protocol Open or Proprietary Governing Organization
Safety Over IO-Link/IO-Link Safety* IO-Link Semi-open/Open Balluff/IO-Link Consortium
AS-Interface Safety at Work (ASISafe) AS-Interface (AS-I) Open AS-International
Flexi Loop Proprietary Sick GmbH
GuardLink Proprietary Rockwell Automation

* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

The awareness of, and the need for, device level safety communications will increase with the desire to more tightly integrate safety and standard sensors into control systems. This will be driven by the need to:

  • Reduce and simplify wiring
  • Add flexibility to scale up, down or change solutions
  • Improve troubleshooting
  • Mix of best-in-class components from a variety of suppliers to optimize solutions
  • Gather and distribute IIoT data upwards to higher level systems

Many users are realizing that neither an Ethernet-based safety protocol, nor a device level safety protocol can meet all their needs, especially if they are trying to implement a cost-effective, comprehensive safety solution which can also support their IIoT needs. This is where a safety communications master (or bridge) comes in – it can connect a device level safety protocol to a control level safety protocol, allowing low cost sensor connection and data gathering at the device level, and transmission of this data to the higher-level communications and control system.

An example of this architecture is Safety Over IO-Link on PROFISafe/PROFINET. Devices such as safety light curtains, E-stops and safety switches are connected to a “Safety Hub” which has implemented the Safety Over IO-Link protocol. This hub communicates via a “black channel” over a PROFINET/IO-Link Master to a PROFISafe PLC. The safety device connections are very simple and inexpensive (off the shelf cables & standard M12 connectors), and the more expensive (and more capable) Ethernet (PROFINET/PROFISafe) connections are only made where they are needed: at the masters, PLCs and other control level devices. And an added benefit is that standard and safety sensors can both connect through the PROFINET/IO-Link Master, simplifying the device level architecture.

Safety

Combining device level and control level protocols helps users optimize their safety communications solutions, balancing cost, data and speed requirements, and allows IIoT data to be gathered and distributed upwards to control and MES systems.

 

Smart choices deliver leaner processes in Packaging, Food and Beverage industry

In all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

Take a look at how the Smart Factory can be implemented in Packaging, Food, and Beverage industries.

Updating Controls Architecture

  • Eliminates analog wiring and reduces costs by 15% to 20%
  • Simplifies troubleshooting
  • Enables visibility down to the sensor/device
  • Simplifies retrofits
  • Reduces terminations
  • Eliminates manual configuration of devices and sensors

Automating Guided Format Change and Change Parts

  • Eliminates changeover errors
  • Reduces planned downtime to perform change over
  • Reduces product waste from start-up after a change over
  • Consistent positioning every time
  • Ensures proper change parts are swapped out

Predictive Maintenance through IO-Link

  • Enhances diagnostics
  • Reduces unplanned downtime
  • Provides condition monitoring
  • Provides more accurate data
  • Reduces equipment slows and stops
  • Reduces product waste

Traceability

  • Delivers accurate data and reduced errors
  • Tracks raw materials and finished goods
  • Date and lot code accuracy for potential product recall
  • Allows robust tags to be embedded in totes, pallets, containers, and fixtures
  • Increases security with access control

Why is all of this important?

Converting a manufacturing process to a smart process will improve many aspects and cure pains that may have been encountered in the past. In the PFB industry, downtime can be very costly due to raw material having a short expiration date before it must be discarded. Therefore, overall equipment efficiency (OEE) is an integral part of any process within PFB. Simply put, OEE is the percentage of manufacturing time that is truly productive. Implementing improved controls architecture, automating change over processes, using networking devices that feature predictive maintenance, and incorporating RFID technology for traceability greatly improve OEE and reduce time spent troubleshooting to find a solution to a reoccurring problem.

Through IO-Link technology and smart devices connected to IO-Link, time spent searching for the root of a problem is greatly reduced thanks to continuous diagnostics and predictive maintenance. IO-Link systems alert operators to sensor malfunctions and when preventative maintenance is required.

Unlike preventative maintenance, which only captures 18% of machine failures and is based on a schedule, predictive maintenance relies on data to provide operators and controls personnel critical information on times when they may need to do maintenance in the future. This results in planned downtime which can be strategically scheduled around production runs, as opposed to unplanned downtime that comes with no warning and could disrupt a production run.

blog 2.20 1

Reducing the time it takes to change over a machine to a different packaging size allows the process to finish the batch quicker than if a manual change over was used, which in turn means a shorter production blog 2.20 2run for that line. Automated change over allows the process to be exact every time and eliminates the risk of operator error due to more accurate positioning.

 

 

blog 2.20 3Traceability using RFID can be a very important part of the smart PFB factory. Utilizing RFID throughout the process —tracking of raw materials, finished goods, and totes leaving the facility — can greatly increase the efficiency and throughput of the process. RFID can even be applied to change part detection to identify if the correct equipment is being swapped in or out during change over.

Adding smart solutions to a PFB production line improves efficiency, increases output, minimizes downtime and saves money.

For more information on the Smart Factory check out this blog post: The Need for Data and System Interoperability in Smart Manufacturing For a deeper dive into format change check out this blog post: Flexibility Through Automated Format Changes on Packaging Machines

 

 

Collaborative Automation…It’s Not Just for Robots

Manufacturing is made up of hundreds of discrete operations. Some are repetitive, while others are more diverse. Repetitive tasks are ideal for automation while diverse tasks require more flexibility. And while automation can be extremely flexible, that comes with a high initial investment costs and significant deployment time. The alternative? People!

Humans have the unrivaled ability to adapt to a diverse and flexible manufacturing environment. They can be productive relatively quickly with proper guidance without high initial cost investments.

But as we all know, “to err is human” and this is one of the biggest issues with manual operations. People need a little guidance from time to time. Collaboration is not just for robots; It’s for complete automation systems as well.

Collaborative automation is most important at the point-of-use, where humans are performing critical operations. Some of those common operations include:

  • Manual assembly for low volume or highly flexible operations
  • Delivery of raw materials to the point-of-use
  • Kit assembly for down-stream operation
  • Machine setup and change-over
  • Machine maintenance and calibration

All of these functions can be done error-free and with little training by simply guiding people within their current work envelope, also referred to as their point-of-use. This type of a lean function provides hands-free guidance in the form of indication devices connected directly to your automation system allowing workers to stay focused on the task at hand instead of looking elsewhere for instructions.

With the technology of IO-Link, smart indication devices can now show much more information to all the people involved in specific manufacturing tasks. Automation has an immediate and direct connection to the people that are so vital.

For example, in a manually-fed weld-cell, the smart indicators are capable of not only signaling that the part is loaded correctly, but also whether the part is out of alignment (shown here by the red indicator) or that something wrong with one of the automation components such as a stuck pneumatic clamp.

Figure 1
A manually-fed weld-cell with smart indicators is capable of not only signaling that the part is loaded correctly, but also if the part is out of alignment (shown by the red indicator) or that there is something wrong with one of the automation components such as a stuck pneumatic clamp.

Even better, with IIoT technology, trends can be analyzed to determine if the fixture/tool could be optimized for production or to identify common failure points. This all leads to tighter collaboration with operations, maintenance personnel and production supervisors.

A traditional kitting station, sometimes referred to as a supermarket, is another ideal application for smart indicators. Not only can they guide a single operator to the intended part to pull, they can guide multiple operators at the same time.  Also, smart indicators can inform of incorrect pulls, potential bin options (a physically closure bin), directional information, and inventory levels. And again, with IIoT technology, trends can be analyzed to determine proper layout, individual personnel performance and system throughput. The automation system collaborates with operations, forklift drivers and production supervisors.

Regal_v06_01_V3
A traditional kitting station, sometimes referred to as a supermarket, with smart indicators to guide operators to the intended part to pull.

So, take a look and see what a collaborative automation system utilizing smart indicators can do for your manual operations. You might be surprised.