Tire Industry Automation: When a Photo-Eye Is Failing, Try an Ultrasonic Sensor

Should you use a photo-eye or an ultrasonic sensor for your automation application? This is a great question for tire industry manufacturing.

I was recently at a tire manufacturing plant when a maintenance technician asked me to suggest a photoelectric sensor for a large upgrade project he had coming up. I asked him about the application, project, and what other sensors he was considering.

His reply was a little startling. He said he had always used photo-eyes, but he couldn’t find a dependable one, so he would continually try different brands. My experience in this industry, along with good sensor training and advice from my colleague Jack Moermond, Balluff Sensor Products Manager, immediately made me think that photo-eye sensors were not the right choice for this application.

As I asked more questions, the problem became clear. The tire material the technician was detecting was black and dull. This type of material absorbs light and does not reflect it reliably back to the sensor. Also, environmental factors, such as dust and residue, can diminish a photo-eye’s signal quality.

Ultrasonic sensors for non-reflective materials and harsh environments

The technician didn’t have much experience with ultrasonic sensors, so I went on to explain why these may be a better solution for his application.

While photoelectric sensors send light beams to detect the presence of or measure the distance to an object, ultrasonics bounce sound waves off a target. This means that ultrasonics can be used in applications where an object’s reflectivity isn’t predictable, like with liquids, clear glass or plastic, or other materials. Dust build up on the face of an ultrasonic sensor does not give a false output. Ultrasonic sensors actually have a dead zone a few millimeters from the face where they won’t detect an object until the wave clears the dead zone, so take this into consideration when planning where to install an ultrasonic sensor.

Tire detection for process reliability with BUS ultrasonic sensors

Tire industry applications

The following are some popular tire industry applications where it might be better to choose an ultrasonic sensor over a photo-eye sensor.

    • The tire building process requires a lot of winding and unwinding of material to build the different layers of a tire. As this material is fed through the machines it starts to sag and loop. An ultrasonic sensor in this location will monitor how much sag and loop is in the process.
    • When tires are being loaded into curing presses, the press needs to confirm that the correct size tire is in place. An ultrasonic sensor can measure the height or width of the tire from the sides or top for confirmation.
    • Ultrasonic sensors are great at detecting if a tire or material is in place before a process starts.
    • Hydraulic systems are common in tire manufacturing. Ultrasonic sensors are good for hydraulic fluid level monitoring. Tying them to a SmartLight offers a visual reference and alarm output if needed.
    • Everyone knows the term “wig-wag” in tire mixing and extrusion. The sheets of wig-wag require monitoring as they are fed through the process. When this material gets close to being used up, a new wig-wag must be used.
Wig-wag stacks

So, when there is an application for a photo-eye, especially in a tire manufacturing plant, keep in mind that, rather than a photoelectric sensor, an ultrasonic may be a better option.

The maintenance technician I spoke with is now looking at different options of ultrasonics to use. He said I gave him something new to think about for his machines and opened the door for adding this technology to his plant.

Happy hunting!

In-Cylinder Position Sensing in Electrically Conductive Hydraulic Fluids

The standard for hydraulic fluid in the industry is mineral oil, which is a dielectric medium that does not conduct electricity. Yet environmental concerns have led to the search for alternatives that are less harmful in case of leaks and spills. One development is biodegradable oils, typically with biological origins, often called “bio-oils” for short. They behave in many ways like mineral oil with a key difference in that they can be electrically conductive.

Another alternative hydraulic fluid is water-glycol mixtures, commonly known as the anti-freeze found in your liquid-cooled automobile engine. Water-glycol solutions are used for several reasons, including environmental concerns but more often conditions of extreme heat or extreme cold. They have much lower viscosity than oil, and there are several fluid power application considerations as a result, but water-glycol mixtures, like bio-oils, are electrically conductive.

Image2

So, when it comes to cylinder position sensing, why should we care whether or not the hydraulic fluid is electrically conductive? Well, because it could come back to bite us if we put an incompatible position sensing technology into a cylinder that is filled with a conductive fluid.

I recently met an engineer who’d run into this exact situation. A hydraulic cylinder was ordered from the manufacturer with an “integrated position feedback sensor.” The feedback sensor turned out to be a resistive potentiometric type, in other words, a linear potentiometer or “pot.” The entire length of the resistive material is “wetted” inside the cylinder, along with the traveling “wiper” that moves with the piston. In typical applications with non-conductive, mineral-based hydraulic fluid, this works fine (although linear pots do tend to be somewhat fragile and do wear out over time). However, when the resistive material and wiper is wetted in a conductive liquid, all kinds of wrong start happening. The signal becomes very erratic, unstable, and lacks resolution and repeatability. This is because the fluid is basically short-circuiting the operation of the open-element linear potentiometer.

This caused quite a headache for the engineer’s customer and subsequently for the engineer. Fortunately, a replacement cylinder was ordered, this time with a non-contact magnetostrictive linear position sensor. The magnetostrictive sensor is supplied with a pressure-rated, protective stainless steel tube that isolates the electrical sensing element from the hydraulic medium. The position marker is a magnet instead of a wiper, which the sensor can detect through the walls of the stainless steel pressure tube. So, a magnetostrictive sensor is absolutely unaffected by the electrical properties of the hydraulic medium.

A magnetostrictive linear position sensor carries a lot of performance and application advantages over linear pots that make them a superior technology in most applications, but when it comes to conductive hydraulic fluids they are definitely the preferred choice.

To learn more about linear position sensors visit www.balluff.com.

Hydraulic Cylinder Position Feedback, Revisited

In a previous Sensortech post entitled “Hydraulic Cylinder Position Feedback“, we discussed the basic concept of hydraulic cylinder position feedback.  In case you might have missed that post, here it is for an encore appearance.

Magnetostrictive linear position transducers are commonly used in conjunction with hydraulic cylinders to provide continuous, absolute position feedback.  Non-contact magnetostrictive technology assures dependable, trouble-free operation.  The brief video below illustrates how magnetostrictive position sensors are used with hydraulic cylinders.

Continue reading “Hydraulic Cylinder Position Feedback, Revisited”