How to keep prox sensors from latching on

For inductive proximity sensors to operate in a stable manner, without constant “chatter” or switching on/off rapidly close to the switching point, they require some degree of hysteresis.

Hysteresis, basically, is the distance between the switch-on point and the switch-off point when the target is moving away from the active surface. Typical values are stated in sensor data sheets; common values would be ≤ 15%, ≤ 10%, ≤ 5% and so on. The value is taken as a percentage of the actual switch-on distance of the individual sensor specimen. Generally, the higher the percentage of hysteresis, the more stable the sensor is and the farther away the target must move to turn off the sensor.

basic_oper_inductive_sensorBut occasionally, a sensor will remain triggered after the target has been removed. This condition is called “latching on” and it typically occurs when the sensor remains damped enough to hold the sensor in the “on” condition.

Some factors that could cause “latching on” behavior and ways to correct it are:

Having too much metal near the sensor
Using a quasi-flush, non-flush, or extended-range sensor that is too close to metal surrounding its sides will partially dampen the sensor. While it is not enough to turn the sensor on, it is enough to hold it in the on state due to hysteresis. If there is a lot of metal close to the sides of the sensor, a flush-type sensor may eliminate the latching-on problem, although it will have shorter range.

Having the mounting nuts too close to the sensor face
of a quasi-flush, non-flush, or extended-range sensor. Even though there are threads in that area, the mounting nuts can pre-damp the sensor.

Using a sensor that is not stable at higher temperatures
Some sensors are more susceptible to latching-on than others as temperature is increased. This is caused by temperature drift, which can increase the sensor’s sensitivity to metals. In these cases, the sensor may work fine at start-up or at room temperature, but as the machinery gets hot it will start latching on. The solution is to make sure that the sensor is rated for the ambient temperature in the application. Another option: look for sensors designed properly by a reputable manufacturer or choose sensors specifically designed to work at higher temperatures.

Having strong magnetic fields
This happens because the magnetic field oversaturates the coil, so that the sensor is unable to detect that the target has been removed. If this is the case, replace them with weld-field-immune or weld-field-tolerant sensors.

inductive-proximity-sensor-cutaway-with-annotation

For a more detailed description of how inductive proximity sensors detect metallic objects without contact, please take a look at this related blog post.

 

Non-Contact Infrared Temperature Sensors with IO-Link – Enabler for Industry 4.0

Automation in Steel-Plants

Modern production requires a very high level of automation. One big benefit of fully automated plants and processes is the reduction of faults and mishaps that may lead to highly expensive downtime. In large steel plants there are hundreds of red hot steel slabs moving around, being processed, milled and manufactured into various products such as wires, coils and bars. Keeping track of these objects is of utmost importance to ensure a smooth and cost efficient production. A blockage or damage of a production line usually leads to an unexpected downtime and it takes hours to be rectified and restart the process.

To meet the challenges of the manufacturing processes in modern steel plants you need to control and monitor automatically material flows. This applies especially the path of the workpieces through the plant (as components of the product to be manufactured) and will be placed also at locations with limited access or hazardous areas within the factory.

Detection of Hot Metal

Standard sensors such as inductive or photoelectric devices cannot be used near red hot objects as they either would be damaged by the heat or would be overloaded with the tremendous infrared radiation emitted by the object. However, there is a sensing principle that uses this infrared radiation to detect the hot object and even gives a clue about its temperature.

Non-contact infrared thermometers meet the requirements and are successfully used in this kind of application. (The basics of this technology were discussed in a previous post.) They can be mounted away from the hot object so they are not destroyed by the heat, yet they capture the Infrared emitted as this radiation travels virtually unlimited. Moreover, the wavelength and intensity of the radiation can be evaluated to allow for a pretty accurate temperature reading of the object. Still there are certain parameters to be set or taught to make the device work correctly. As many of these infrared thermometers are placed in hazardous or inaccessible places, a parametrization or adjustment directly at the device is often difficult or even impossible. Therefore, an intelligent interface is required both to monitor and read out data generated by the sensor and – even more important – to download parameters and other data to the sensor.

Technical basics of Infrared Hot-Metal-Detectors

Traditional photoelectric sensors generate a signal and receive in most cases a reflection of this signal. Contrary to this, an infrared sensor does not emit any signal. The physical basics of an infrared sensor is to detect infrared radiation which is emitted by any object.
Each body, with a temperature above absolute zero (-273.15°C or −459.67 °F) emits an
electromagnetic radiation from its surface, which is proportional to its intrinsic
temperature. This radiation is called temperature or heat radiation.

By use of different technologies, such as photodiodes or thermopiles, this radiation can be detected and measured over a long distance.

Key Advantages of Infrared Thermometry

This non-contact, optical-based measuring method offers various advantages over thermometers with direct contact:

  • Reactionless measurement, i.e. the measured object remains unaffected, making it possible to measure the temperature of very small parts
  • Very fast measuring frequence
  • Measurement over long distances is possible, measuring device can be located outside the hazardous area
  • Very hot temperatures can be measured
  • Object detection of very hot parts: pyrometers can be used for object detection of very hot parts where conventional optical sensors are limited by the high infrared radiation
  • Measurement of moving objects is possible
  • No wear at the measuring point
  • Non-hazardous measurement of electrically live parts

IO-Link for smarter sensors

IO-Link as sensor interface has been established for nearly all sensor types in the past 10 years. It is a standardized uniform interface for sensors and actuators irrespective of their complexity. They provide consistent communication between devices and the control system/HMI.  It also allows for a dynamic change of sensor parameters by the controller or the operator on the HMI thus reducing downtimes for product changeovers. If a device needs to be replaced there is automatic parameter reassignment as soon as the new device has been installed and connected. This too reduces manual intervention and prevents incorrect settings. No special device-proprietary software is needed and wiring is easy, using three wire standard cables without any need for shielding.

Therefore, IO-Link is the ideal interface for a non-contact temperature sensor.

All values and data generated within the temperature sensor can be uploaded to the control system and can be used for condition monitoring and preventive maintenance purposes. As steel plants need to know in-process data to maintain a constant high quality of their products, sensors that provide more data than just a binary signal will generate extra benefit for a reliable, smooth production in the Industry 4.0 realm.

To learn more about this technology visit www.balluff.com.

The basics of IP69K Washdown explained

Ask 10 engineers working in Food & Beverage manufacturing what “washdown” means to them and you will probably get about 12 answers.  Ask them why they wash down equipment and a more consistent answer appears, everyone is concerned about making clean healthy food and they want to reduce areas of harborage for bacteria.  These environments tend to be cool & wet which usually leads the engineers to ask for 316L stainless steel & ingress protection of IP69K from component manufacturers and also ask for special component ratings.

So what are the basic elements of the washdown procedure?

  • Hot! – Minimum 140F to kill microbes & bacteria.
  • High Pressure! – Up to 1000psi to blast away soiled material.
  • Nasty! – Water, caustics, acid detergents, spray & foam everywhere.
  • Hard Work! – Typically includes a hand cleaning or scrubbing of key components.
  • Regular! – Typically 15-20hrs per week are spent cleaning equipment but in dairy & meat it can be more.

What requirements are put onto components exposed to washdown?

  • Stainless Steel resists corrosion and is polished to level the microscopic roughness that provides harborage for bacteria.
  • Special Component Ratings:
    • ECOLAB chemical testing for housings
    • FDA approved materials
    • 3A USA hygienic for US Equipment
    • EHEDG hygienic for European Equipment
  • IP69K is tested to be protected from high pressure steam cleaning per DIN40050 part 9; this is not guaranteed to be immersion rated (IP67) unless specifically identified.

If you are interested in what sensors, networking & RFID products are available for use in food and beverage manufacturing with a washdown environment, please visit www.balluff.us.

Sensor Reliability in Steel Production

01_SteelIn any continuous manufacturing process such as steel production, increased throughput is the path to higher profits through maximum utilization of fixed capital investments. In order to achieve increased throughput, more sophisticated control systems are being deployed. These systems enable ever-higher levels of automation but can present new challenges in terms of managing system reliability. Maintenance of profit margins depends on the line remaining in production with minimal unexpected downtime.

It is essential that control components, such as sensors, be selected in accordance with the rigorous demands of steel industry applications. Standard sensors intended for use in more benign manufacturing environments are often not suitable for the steel industry and may not deliver dependable service life.

When specifying sensors for steel production applications, some environmental conditions to consider include:

Heat

High-temperature M30 proximity sensor.
High-temperature M30 proximity sensor.

High temperatures exist in many areas of the steel-making process, such as the coke oven battery, blast furnace, electric arc furnace, oxygen converter, continuous casting line, and hot rolling line. Electronic components are stressed by elevated temperatures and can fail at much higher rates than they would at room temperature. Heat can affect sensors through conduction (direct transfer from the mounting), convection (circulating hot air), or radiation (line-of-sight infrared heating at a distance). The first strategy is to install sensors in ways that minimize exposure to these three thermal mechanisms. The second line of defense is to select sensors with extended temperature ratings. Many standard sensors can operate up to 185° F (85° C) but high temperature versions can operate to 212° F (100° C) or higher. Extreme temperature sensors can operate to 320° F (160° C) or even 356° F (180° C).

Don’t forget to consider the temperature rating of any quick-disconnect cables that will be used with the sensors. Many standard cable materials will melt or break down quickly at higher temperatures. Fiberglass-jacketed cables, for example, are rated to 752° F (400° C).

Shock and Vibration

Hydraulic cylinder position sensor rated at 150 G shock.
Hydraulic cylinder position sensor rated at 150 G shock.

Steel making involves large forces and heavy loads that generate substantial amounts of shock under normal and/or abnormal conditions. Vibration is also ever-present from motors, rollers, and moving materials. As with heat, look for sensors with enhanced specifications for shock and vibration. For sensors with fixed mountings, look for shock ratings of at least 30 G. For sensors mounted to equipment that is moving (for example, position sensors on hydraulic cylinders), consider sensors with shock ratings of 100 to 150 G. For vibration, the statement of specifications can vary. For example, it may be stated as a frequency and amplitude, such as 55 Hz @ 1 mm or as acceleration over a frequency range, such as 20 G from 10…2000 Hz.

Don’t forget that the quick-disconnect connector can sometimes be a vulnerability under severe shock. Combat broken connectors with so-called “pigtail” or “inline” connectors that have a flexible cable coming out of the sensor that goes to a quick-disconnect a few inches or feet away.

Mechanical Impact

Steelface proximity sensors bunkered in protective mounting.
Proximity sensor bunkered in a protective mounting block.

The best way to protect sensors from mechanical impact is to install them in protective mounting brackets (a.k.a. “bunker blocks”) or to provide heavy-duty covers over them. When direct contact with the sensor cannot be avoided, choose sensors specifically designed to handle impact.

Another strategy is to use remote sensor actuation to detect objects without making physical contact with the sensor itself.

Corrosion and Liquid Ingress

In areas with water spray and steam, such as the scale cracker on a hot strip line, corrosion and liquid ingress can lead to sensor failure. Look for stainless steel construction (aluminum can corrode) and enhanced ingress protection ratings such as IP68 or IP69K.

When All Else Fails…Rapid Replacement

Quick-change prox mounts for proximity sensors.
Quick-change prox mounts for proximity sensors.

If and when a sensor failure inevitably occurs, choose products and accessories that can minimize the downtime by speeding up the time required for replacement.

Strategies include quick-change sensor mounts, rapid-replacement sensor modules, and redundant sensor outputs.

In the case of redundant sensor outputs, if the primary output fails, the system can continue to operate from the secondary or even tertiary output.

You can learn more about sensing solutions for the Steel Industry in Balluff’s industry brochure.