Evolution of Magnetic Field Sensors

When I visit customers, often a few minutes into our conversation they indicate to me they “must decrease their manufacturing downtime.” We all know that an assembly line or weld cell that is not running is not making any money or meeting production cycle times. As we have the conversation regarding downtime, the customer always wants to know what new or improved products are available that can increase uptime or improve their current processes.

A major and common problem seen at the plant level is a high amount of magnetic field sensor failures. There are many common reasons for this, for example low-quality sensors being used such as Reed switches that rely on mechanical contact operation. Reed switches typically have a lower price point than a discrete solid state designs with AMR or GMR technologies, however these low-cost options will cost much more in the long run due to inconsistent trigger points and premature failure that results in machine downtime. Another big factor in sensor failure is the operating environment of the pneumatic cylinder. It is not uncommon to see a cylinder located in a very hostile area, resulting in sensor abuse and cable damage. In some cases, the failure is traceable to a cut cable or a cable that has been burned through from weld spatter.

Below are some key tips and questions that can be helpful when selecting a magnetic field sensor.

  • Do I need a T- or C-slot mounting type?
  • Do I need a slide-in or a drop-in style?
  • Do I need an NPN or PNP output?
  • Do I need an offering that has an upgraded cable for harsh environments, such as silicone tubing?
  • Do I need a dual-sensor combination that only has one cable to simplify cable connections?
  • Do I need digital output options like IO-Link that can provide multiple switch points and hysteresis adjustment?
  • Do I need a single teachable sensor that can read both extended and retracted cylinder position?

Magnetic field sensors have evolved over the years with improved internal technology that makes them much more reliable and user-friendly for a wide range of applications. For example, if the customer has magnetic field sensors installed in a weld cell, they would want to select a magnetic field sensor that has upgraded cable materials or perhaps a weld field immune type to avoid false signals caused by welding currents. Another example could be a pick and place application where the customer needs a sensor with multiple switch points or a hysteresis adjustment. In this case the customer could select a single head multiple setpoint teach-in sensor, offering the ability to fine tune the sensing behavior using IO-Link.

If the above tips are put into practice, you will surely have a better experience selecting the correct product for the application.

For more information on all the various types of magnetic field sensors click here.

Harsh Industrial Environments Challenge Plant Operators

Most industrial processes do not take place in a climate-controlled laboratory or clean room environment. Real-world industrial activity generates or takes place under harsh conditions that can damage or shorten the life expectancy of equipment, especially electronic sensors.

A cross-section of industrial users was surveyed about operating conditions in their facilities. The responses revealed that plant operators are challenged by a variety of difficult environmental factors, the biggest being heat, dust/dirt/water contamination, vibration, and extreme temperature swings.

linearpositionsensorinfographic

Over one-third of the industrial users surveyed reported that premature sensor failure is a problem in their operations. That is a surprisingly high percentage and something that needs to be addressed to restore lost productivity and maintain long-term competitiveness.

Many heavy industries are dependent on automated hydraulic cylinders to move and control large loads precisely. The cylinder position sensors are often subjected to damaging environmental conditions that shorten their life expectancy, leading to premature failure.

Fortunately, there are measures that can be taken to reduce or eliminate the occurrence of sensor-related downtime. Help is available in the form of a free white paper from Balluff called “Improving the Reliability of Hydraulic Cylinder Position Sensors”.

To learn more about this topic you can also visit www.balluff.us.