Top 5 Insights from 2019

With a new year comes new innovation and insights. Before we jump into new topics for 2020, let’s not forget some of the hottest topics from last year. Below are the five most popular blogs from our site in 2019.

1. How to Select the Best Lighting Techniques for Your Machine Vision Application

How to select the best vision_LI.jpgThe key to deploying a robust machine vision application in a factory automation setting is ensuring that you create the necessary environment for a stable image.  The three areas you must focus on to ensure image stability are: lighting, lensing and material handling.  For this blog, I will focus on the seven main lighting techniques that are used in machine vision applications.

READ MORE>>

2. M12 Connector Coding

blog 7.10_LI.jpgNew automation products hit the market every day and each device requires the correct cable to operate. Even in standard cables sizes, there are a variety of connector types that correspond with different applications.

READ MORE>>

3. When to use optical filtering in a machine vision application

blog 7.3_LI.jpgIndustrial image processing is essentially a requirement in modern manufacturing. Vision solutions can deliver visual quality control, identification and positioning. While vision systems have gotten easier to install and use, there isn’t a one-size-fits-all solution. Knowing how and when you should use optical filtering in a machine vision application is a vital part of making sure your system delivers everything you need.

READ MORE>>

4. The Difference Between Intrinsically Safe and Explosion Proof

5.14_LIThe difference between a product being ‘explosion proof’ and ‘intrinsically safe’ can be confusing but it is vital to select the proper one for your application. Both approvals are meant to prevent a potential electrical equipment malfunction from initiating an explosion or ignition through gases that may be present in the surrounding area. This is accomplished in both cases by keeping the potential energy level below what is necessary to start ignition process in an open atmosphere.

READ MORE>>

5. Smart choices deliver leaner processes in Packaging, Food and Beverage industry

Smart choices deliver leaner processes in PFB_LI.jpgIn all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

READ MORE>>

We appreciate your dedication to Automation Insights in 2019 and look forward to growth and innovation in 2020!

 

 

Smart choices deliver leaner processes in Packaging, Food and Beverage industry

In all industries, there is a need for more flexible and individualized production as well as increased transparency and documentable processes. Overall equipment efficiency, zero downtime and the demand for shorter production runs have created the need for smart machines and ultimately the smart factory. Now more than ever, this is important in the Packaging, Food and Beverage (PFB) industry to ensure that the products and processes are clean, safe and efficient.

Take a look at how the Smart Factory can be implemented in Packaging, Food, and Beverage industries.

Updating Controls Architecture

  • Eliminates analog wiring and reduces costs by 15% to 20%
  • Simplifies troubleshooting
  • Enables visibility down to the sensor/device
  • Simplifies retrofits
  • Reduces terminations
  • Eliminates manual configuration of devices and sensors

Automating Guided Format Change and Change Parts

  • Eliminates changeover errors
  • Reduces planned downtime to perform change over
  • Reduces product waste from start-up after a change over
  • Consistent positioning every time
  • Ensures proper change parts are swapped out

Predictive Maintenance through IO-Link

  • Enhances diagnostics
  • Reduces unplanned downtime
  • Provides condition monitoring
  • Provides more accurate data
  • Reduces equipment slows and stops
  • Reduces product waste

Traceability

  • Delivers accurate data and reduced errors
  • Tracks raw materials and finished goods
  • Date and lot code accuracy for potential product recall
  • Allows robust tags to be embedded in totes, pallets, containers, and fixtures
  • Increases security with access control

Why is all of this important?

Converting a manufacturing process to a smart process will improve many aspects and cure pains that may have been encountered in the past. In the PFB industry, downtime can be very costly due to raw material having a short expiration date before it must be discarded. Therefore, overall equipment efficiency (OEE) is an integral part of any process within PFB. Simply put, OEE is the percentage of manufacturing time that is truly productive. Implementing improved controls architecture, automating change over processes, using networking devices that feature predictive maintenance, and incorporating RFID technology for traceability greatly improve OEE and reduce time spent troubleshooting to find a solution to a reoccurring problem.

Through IO-Link technology and smart devices connected to IO-Link, time spent searching for the root of a problem is greatly reduced thanks to continuous diagnostics and predictive maintenance. IO-Link systems alert operators to sensor malfunctions and when preventative maintenance is required.

Unlike preventative maintenance, which only captures 18% of machine failures and is based on a schedule, predictive maintenance relies on data to provide operators and controls personnel critical information on times when they may need to do maintenance in the future. This results in planned downtime which can be strategically scheduled around production runs, as opposed to unplanned downtime that comes with no warning and could disrupt a production run.

blog 2.20 1

Reducing the time it takes to change over a machine to a different packaging size allows the process to finish the batch quicker than if a manual change over was used, which in turn means a shorter production blog 2.20 2run for that line. Automated change over allows the process to be exact every time and eliminates the risk of operator error due to more accurate positioning.

 

 

blog 2.20 3Traceability using RFID can be a very important part of the smart PFB factory. Utilizing RFID throughout the process —tracking of raw materials, finished goods, and totes leaving the facility — can greatly increase the efficiency and throughput of the process. RFID can even be applied to change part detection to identify if the correct equipment is being swapped in or out during change over.

Adding smart solutions to a PFB production line improves efficiency, increases output, minimizes downtime and saves money.

For more information on the Smart Factory check out this blog post: The Need for Data and System Interoperability in Smart Manufacturing For a deeper dive into format change check out this blog post: Flexibility Through Automated Format Changes on Packaging Machines