Palletized Automation with Inductive Coupling

RFID is an excellent way to track material on a pallet through a warehouse. A data tag is placed on the pallet and is read by a read/write head when it comes in range. Commonly used to identify when the pallet goes through the different stages of its scheduled process, RFID provides an easy way to know where material is throughout a process and learn how long it takes for product to go through each stage. But what if you need I/O on the pallet itself or an interchangeable end-of-arm tool?

Inductive Coupling

1

Inductive coupling delivers reliable transmission of data without contact. It is the same technology used to charge a cell phone wirelessly. There is a base and a remote, and when they are aligned within a certain distance, power and signal can be transferred between them as if it was a standard wire connection.

2

When a robot is changing end-of-arm tooling, inductive couplers can be used to power the end of arm tool without the worry of the maintenance that comes with a physical connection wearing out over time.

For another example of how inductive couplers can be used in a process like this, let’s say your process requires a robot to place parts on a metal product and weld them together. You want I/O on the pallet to tell the robot that the parts are in the right place before it welds them to the product. This requires the sensors to be powered on the pallet while also communicating back to the robot. Inductive couplers are a great solution because by communicating over an air gap, they do not need to be connected and disconnected when the pallet arrives or leaves the station. When the pallet comes into the station, the base and remote align, and all the I/O on the pallet is powered and can communicate to the robot so it can perform the task.

Additionally, Inductive couplers can act as a unique identifier, much like an RFID system. For example,  when a pallet filled with product A comes within range of the robot, the base and remote align telling the robot to perform action A. Conversely, when a pallet loaded with product B comes into range, the robot communicates with the pallet and knows to perform a different task. This allows multiple products to go down the same line without as much changeover, thereby reducing errors and downtime.

Recap of our top 5 posts of 2015

goodbye-2015-hello-2016As we wrap up the old and begin to open up the new, let’s take a moment to reflect on what this past year has brought us.  Apart from the triumphs and the hard lost battles, we want to bring you some of our top posts from 2015.  These posts are as follows:

#5: 5 Tips on Making End-of-Arm Tooling Smarter

Everyone wants their robot to work faster, smarter, and more efficiently.  In this post we review five easy tips to help you improve the efficiency of your end-of-arm tooling.

Example of discrete sensors used to detect tank level
Example of discrete sensors used to detect tank level

#4: Liquid Level Sensing: Detect or Monitor

Who doesn’t like complicated concepts broken down into easy to understand terminology? In this post we break down the differences between point level detection and continuous position sensing as well as provide you with technologies to put into practice.

#3: How Can I Convince My Boss to Send Me to Training?

As Aristotle once said “All men (and women) by nature desire knowledge.”  Here we are giving you the tools needed to break down the barriers your boss (or you) might have against investing in training.

#2: Back to the Basics: How Do I Wire a 2-Wire Sensor?

So you just got a brand spanking new 2-wire sensor for the holidays but you realize you don’t know exactly what wire goes where.  In this post we make wiring that bad boy easy and even break down what polarized and non-polarized mean.

So we have covered four of the top posts from 2015, are you ready for the number one post from the past year? So are we! And we will have it for you right after a quick message from our sponsors! (just kidding!)

power&dataexchange#1: Inductive Coupling – Simple Concept for Complex Automation

Through the use of magnetic induction, we are able to reduce the downtime of a machine due to the failure of a slip ring.  Inductive couplers pass power and data over an air gap creating a maintenance free, non-contact environment to operate a variety of machinery.

We want to thank you for the wonderful year that is behind us and be sure to be on the look-out for even more exciting news to come this year!

5 Tips on Making End-of-Arm Tooling Smarter

Example of a Flexible EOA Tool with 8 sensors connected with an Inductive Coupling System.

Over the years I’ve interviewed many customers regarding End-Of-Arm (EOA) tooling. Most of the improvements revolve around making the EOA tooling smarter. Smarter tools mean more reliability, faster change out and more in-tool error proofing.

#5: Go Analog…in flexible manufacturing environments, discrete information just does not provide an adequate solution. Analog sensors can change set points based on the product currently being manufactured.

#4: Lose the weight…look at the connectors and cables. M8 and M5 connectorized sensors and cables are readily available. Use field installable connectors to help keep cable runs as short as possible. We see too many long cables simply bundled up.

#3: Go Small…use miniature, precision sensors that do not require separate amplifiers. These miniature sensors not only cut down on size but also have increased precision. With these sensors, you’ll know if a part is not completely seated in the gripper.

#2: Monitor those pneumatic cylinders…monitoring air pressure in one way, but as speeds increase and size is reduced, you really need to know cylinder end of travel position. The best technology for EOA tooling is magnetoresistive such as Balluff’s BMF line. Avoid hall-effects and definitely avoid reed switches. Also, consider dual sensor styles such as Balluff’s V-Twin line.

#1: Go with Couplers…with interchangeable tooling, sensors should be connected with a solid-state, inductive coupling system such as Balluff’s Inductive Coupler (BIC). Avoid the use of pin-based connector systems for low power sensors. They create reliability problems over time.

Rise of the Robots – 3 Ways to Be On Their Team

While originally a mixed reviewed 1994 console video game, the recently published report by The Boston Consulting Group titled “The Rise of Robotics”  really made me realize how important it is that we embrace robotics in our manufacturing processes.  And I strongly agree with this statement: “Because robots can sharply improve productivity and offset regional differences in labor costs and availability, they’ll likely have a major impact on the competitiveness of companies and countries alike.”  They studied the growth of the usage of robots in personal, commercial, military and industrial use and the numbers were quite powerful.  Of interest to me is the rise in industrial robotics; doubling in 5 years from $5.8b to $11.0b in 2015.  And the growth is expected to more than double again by 2025 to $24.4b in the industrial space.

What this means for manufacturers, machine builders and component suppliers is we need to make sure our people are trained to support this growth and that we we have strong peripheral technologies to support robots as they grow and expand.  Even today there are some great technologies available in sensors and controls that make robotic integration easier for manufacturing companies.

So here are the three ways to make sure you are your robot’s ally.

  1. Maximize Their Payload!

    No one wants to be treated like they can’t help… especially your robots, they want you to utilize them and feel appreciated.  For most robotics right now, payload size & payload weight is a limiting factor.  Mini sensing products with precision switch points, small form factors and low mass allow for the design of low weight, compact payloads without limiting the functionality or speed of the robot.

  2. Keep them Working!

    A working robot is a happy robot.  By adding flexible tooling or quick-change tooling to the end-effector of a robot you can have one arm perform multiple functions and keep idle arms to a minimum, increasing their value and “happiness.”  Multiple products are out there to allow for this, however there is a technology that allows for sensor connections through inductive coupling that dramatically decreases repair issues and downtime due to tool changer pins.

  3. Remove the Chains!  

    What’s the deal with cable dress packs… they look like really bad suspenders sometimes… you see them, you don’t like how they look, but you need it to keep your pants on… I guarantee that robots don’t like these things either… And with all that flexing something in there will fail regularly.  There are some great technologies to reduce the sensor cables running on the arm and add flexibility and they are supported by the open standard IO-Link (discussed in other posts here!).

So as you integrate robots more and more into the manufacturing we are doing, please start thinking how to align yourself as a robot’s ally.  Because I know I want to be on this guy’s team…