Absolutely Incremental – Innovations in Magnetic Linear Encoder Technology

Linear encoders – absolute or incremental?  Incremental encoders are simple, inexpensive, and easy to implement, but they require that the machine be homed or moved to a reference position.  Absolute encoders don’t require homing, but they’re usually more expensive, and implementation is a bit more involved.  What if you could get an incremental encoder that also gave you absolute position?  Would that be great, or what?  Read on.

IncrementalEncodersIncremental encoders are pretty simple and straightforward.  They provide digital pulses, typically in A/B quadrature format, that represent relative position movement.  The number of pulses the encoder sends out correspond to the amount of position movement.  Count the pulses, do some simple math, you know how much movement has occurred from point A to point B.  But, here’s the thing, you don’t actually know where you are exactly.  You only know how far you’ve moved from where you started.  You’ve counted an increment of movement.  If you truly want to know where you are, you have to travel to a defined home or reference position and count continuously from that position.

AbsoluteEncodersAbsolute encoders, on the other hand, provide a unique output value everywhere along the linear travel, usually in the form of a serial data “word”.  Absolute encoders tell you exactly (absolutely) where they are at all times.  There’s no need to go establish a home or reference position.

So absolute is better, yes?  If that’s so, then why doesn’t everyone use them instead of incremental encoders?

It’s because incremental encoders typically cost a lot less, and are much easier to integrate.  In terms of controller hardware, all you need is a counter input to count the pulses.  That counter input could be integral to a PLC, or it could take the form of a dedicated high-speed counter module.  Either way, it’s a fairly inexpensive proposition.  And the programming to interpret the pulse count is pretty simple and straightforward as well.  An absolute encoder will usually require a dedicated motion module with a Synchronous Serial Interface (SSI, BiSS, etc.).  These interfaces are going to be both more expensive and more complex than a simple counter module.  Plus, the programming logic is going to be quite a bit more involved.

So, yes, being able to determine the absolute position of a moving axis is undoubtedly preferable.  But the barriers to entry are sometimes just too high.  An ideal solution would be one that combines the simplicity and lower cost of an incremental encoder with the ability to also provide absolute position.

Fortunately, such solutions do exist.  Magnetic linear encoders with a so-called Absolute Quadrature interface provide familiar A/B quadrature signals PLUS the ability to inform the controller of their exact, absolute position.  Absolute position can be provided either on-demand, or every time the sensor is powered up.

How is this possible?  It’s really quite ingenious. You could say that the Absolute Quadrature encoders are “absolute on the inside, and incremental on the outside”.  These encoders use absolute-coded magnetic tape, and the sensing head reads that position (with resolution as fine as 1 µmeter and at lengths up to 48-meters, by the way).  But, during normal operation, the sensor head outputs standard A/B quadrature signals.  Remember though, it actually knows exactly where it is (absolute inside…remember?), and can tell you if you ask.  When requested (or on power-up, if that’s how you have it configured), the sensor head sends out a string, or burst, of A/B pulses equal to the distance between the home position and the current position.  It’s as if you moved the axis back to home position, zeroed the counter, and then moved instantly back to current position.  But no actual machine movement is necessary.  The absolute burst happens in milliseconds.

So, to sum it up, Absolute Quadrature linear encoders provide a number of advantages:

  • Economical: Compatible with standard A/B incremental interfaces – no absolute controller needed
    • No need to upgrade hardware; can connect to existing control hardware
    • Get the advantages of absolute, but maintain the simplicity of incremental; eliminate the need for homing
  • Easy implementation: Simple setup, no (or very minimal) new programming required
  • Accurate: Resolution down to 1 µm, over lengths up to 48 meters

If you’d like to learn more about linear encoders with Absolute Quadrature, go to: http://www.balluff.com/local/us/news/product-news/bml-absolute-quadrature/

Putting Linear Encoders Out of Sight and Out of Mind

Linear encoders can do a lot to improve factory automation. When used as secondary feedback they can greatly enhance the precision of motion control systems. They can act as a feedback device for automatic size change, and they can be used in gauging applications.

However, they can be troublesome to maintain. Most linear encoders are made from a glass strip or rod that is etched with index marks and read optically. These kinds of encoders can achieve very high accuracy…with high price points to match. However, a consistent problem in many factory automation environments is the mechanical fragility of the glass scale encoder. They can be easily broken by shock, vibration, or impact. The presence of dirt and liquids can also interfere with proper operation. Repair costs can become a problem, not to mention the cost of carrying the spare parts needed to cope with long lead times for replacements.

bml-s1fDepending on the resolution and accuracy class required, one alternative to these issues is the magnetic linear encoder. Today’s magnetic encoders can achieve resolution to 1 μm and accuracy to ±5 μm. Rather than index marks on glass, the scale consists of magnetic poles precisely located on a ferromagnetic strip of tape. A magnetic read head glides over the tape and outputs digital position signals. The magnetic system is much more tolerant of shock and vibration, and can tolerate most kinds of liquids and dirt. The main caveat is ferrous particles or chips; these can accumulate on the magnetic strip and cause position deviations.

Most magnetic linear encoders offer incremental signals, but a new option is absolute position over an SSI or BiSS-C serial interface. This allows the encoder to report position upon power-up, without the need for a time-wasting homing or reference run. This can be helpful in situations like a power outage, where it may not be possible to re-home the machine without damaging work in process and/or breaking tooling.

To learn more visit www.balluff.us.

Enhancing Stepper Motor Systems with Linear Encoders

Tabletop automation is a trend that is gaining momentum, especially in the fields of medical laboratory automation and 3D printing. Both of these applications demand a level of linear positioning accuracy and speed that might suggest a servomotor as a solution, but market-driven cost constraints put most servos out of financial consideration. New advances in stepper motor design, including higher torque, higher power ratings, and the availability of closed-loop operation via integrated motor encoder feedback are enabling steppers to expand their application envelope to include many tasks that formerly demanded a servo system.

Meeting the Demand for Even More Accurate, More Reliable Positioning

As tabletop automation development progresses, performance demands are increasing to the point that stepper systems may struggle to meet requirements. Fortunately, the addition of an external linear encoder for direct position feedback can enhance a stepper system to enable the expected level of reliable accuracy. An external linear encoder puts drive-mechanism non-linearity inside the control loop, meaning any deviations caused by drive component inaccuracy are automatically corrected and compensated by the overall closed-loop positioning system. In addition, the external linear encoder provides another level of assurance that the driven element has actually moved to the position indicated by the number of stepper pulses and/or the movement reported by the motor encoder. This prevents position errors due to stepper motor stalling, lost counts on the motor encoder, someone manually moving the mechanism against motor torque, or drive mechanism malfunction, i.e. broken drive belt or sheared/skipped gearing.

Incremental, Absolute, or Hybrid Encoder Signals

bmlThe position signals from the external encoder are typically incremental, meaning a digital quadrature square wave train of pulses that are counted by the controller. To find a position, the system must be “homed” to a reference position and then moved the required number of counts to reach the command position. The next move requires starting with the position at the last move and computing the differential move to the next command position. Absolute position signals, typically SSI (synchronous serial interface) provide a unique data value for each position. This position is available upon power-up…no homing movement is required and there is no need for a pulse counter. A recent innovation is the hybrid encoder, where the encoder reads absolute position from the scale, but outputs a quadrature incremental pulse train in response to position moves. The hybrid encoder (sometimes referred to as “absolute quadrature”) can be programmed to deliver a continuous burst of pulses corresponding to absolute position at power up, upon request from the controller, or both.

For more information about magnetic linear encoder systems, visit www.balluff.us.