Choosing a Contactless Sensor to Measure Objects at a Distance

Three options come to mind for determining which contactless sensor to use when measuring objects at a distance: photoelectric sensors, ultrasonic sensors, and radar detection. Understanding the key differences among these types of technologies and how they work can help you decide which technology will work best for your application.

Photoelectric sensor

The photoelectric sensor has an emitter that sends out a light source. Then a receiver receives the light source. The common light source LED (Light Emitting Diodes), has three different types:

    • Visible light (usually red light) has the shortest wavelength, but allows for easy installment and alignment as the light can be seen.
    • Lasers are amplified beams that can deliver a large amount of energy over a distance into a small spot, allowing for precise measurement.
    • Infrared light is electromagnetic radiation with wavelengths longer than visible light, generally making them invisible to the humans. This allows for infrared to be used in harsher environments that contain particles in the air.

Along with three types of LEDs, are three models of photoelectric sensors:

    • The retro-reflective sensor model includes both an emitter and receiver in one unit and a reflector across from it. The emitter sends the light source to the reflector which then reflects the light back to the receiver. When an object comes between the reflector and the emitter, the light source cannot be reflected.
    • The through-beam sensor has an emitter and receiver in two separate units installed across from the emitter. When an object breaks the light beam, the receiver cannot receive the light source.
    • The diffuse sensor includes an emitter and receiver built into one unit. Rather than having a reflector installed across from it the light source is reflective off the object back to the receiver.

The most common application for photoelectric sensors is in detecting part presence or absence. Photoelectric sensors do not work well in environments that have dirt, dust, or vibration. They also do not perform well with detecting clear or shiny objects.

Ultrasonic sensor

The ultrasonic sensor has an emitter that sends a sound wave at a frequency higher than what a human can hear to the receiver.  The two modes of an ultrasonic sensor include:

    • Echo mode, also known as a diffused mode, has an emitter and receiver built into the same unit. The object detection works with this mode is that the emitter sends out the sound wave, the wave then bounces off the target and returns to the receiver. The distance of an object can be determined by timing how long it takes for the sound wave to bounce back to the receiver.
    • The second type of mode is the opposed mode. The opposed mode has the emitter and receiver as two separate units. Object detection for this mode works by the emitter will be set up across from the receiver and will be sending sound waves continuously and an object will be detected once it breaks the field, similarly to how photoelectric sensors work.

Common applications for ultrasonic sensors include liquid level detection, uneven surface level detection, and sensing clear or transparent objects. They can also be used as substitutes for applications that are not suitable for photoelectric sensors.

Ultrasonic sensors do not work well, however, in environments that have foam, vapors, and dust. The reason for this is that ultrasonic uses sound waves need a medium, such as air, to travel through. Particles or other obstructions in the air interfere with the sound waves being produced. Also, ultrasonic sensors do not work in vacuums which don’t contain air.

Radar detection

Radar is a system composed of a transmitter, a transmitting antenna, a receiving antenna, a receiver, and a processor. It works like a diffuse mode ultrasonic sensor. The transmitter sends out a wave, the wave echoes off an object, and the receiver receives the wave. Unlike a sound wave, the radar uses pulsed or continuous radio waves. These wavelengths are longer than infrared light and can determine the range, angle, and velocity of objects. radar also has a processor that determines the properties of the object.

Common applications for radar include speed and distance detection, aircraft detection, ship detection, spacecraft detection, and weather formations. Unlike ultrasonic sensors, radar can work in environments that contain foam, vapors, or dust. They can also be used in vacuums. Radio waves are a form of electromagnetic waves that do not require a transmission medium to travel. An application in which radar does not perform well is detecting dry powders and grains. These substances have low dielectric constants, which are usually non-conductive and have low amounts of moisture.

Choosing from an ultrasonic sensor, photoelectric sensor, or radar comes down to the technology being used. LEDs are great at detecting part presences and absence of various sizes. Sound waves are readily able to detect liquid levels, uneven surfaces, and part presence. Electromagnetic waves can be used in environments that include particles and other substances in the air. It also works in environments where air is not present at all. One technology is not better than the other; each has its strengths and its weaknesses. Where one cannot work, the others typically can.

Shedding Light on Different Types of Photoelectric Sensors

Photoelectric sensors have been around for more than 50 years and are used in everyday things – from garage door openers to highly automated assembly lines that produce the food we eat and the cars we drive.

The correct use of photoelectric sensors in a manufacturing process is important to ensure machines can perform their required actions. Over the years they have evolved into many different forms.

But, how do you know which is the right sensor for your application?  Let’s take a quick look at the different types and why you would choose one over another for your needs.

Diffuse sensors

    • Ideal for detecting contrast differences, depending on the surface, color, and material
    • Detects in Light-On or Dark-On mode, depending on the target
    • Economical and easy to mount and align, thanks to visible light beams
    • Shorter ranges as compared to retroreflective and through-beam sensors
    • IR (Infrared) light beams available for better detection in harsh environments
    • Laser light versions are available for more precise detection when needed
    • Mounting includes only one electrical device

Diffuse sensor with background suppression

    • Reliable object detection with various operating ranges, and independent of surface, color, and material
    • Detects objects against very similar backgrounds – even if they are very dark against a bright background
    • Almost constant scanning range even with different reflectance
    • Only one electrical device without reflectors or separate receivers
    • Good option if you cannot use a through-beam or retroreflective sensor
    • With red light or the laser red light that is ideally suited for detecting small parts

Retroreflective sensors

    • Simple alignment thanks to generous mounting tolerances
    • Large reflectors for longer ranges
    • Reliable detection, regardless of surface, color, and material
    • Polarized light filters are available to assist with detecting shiny objects
    • Mounting includes only one electrical device, plus a reflector
    • Most repeatable sensor for clear object detection; light passes through clear target 2X’s giving a greater change in light received by the sensor

Through-beam sensors

    • Ideal for positioning tasks, thanks to excellent reproducibility
    • Most reliable detection method for objects, especially on conveyor applications
    • Extremely resistant to contamination and suitable for harsh environments
    • Ideally suited for large operating ranges
    • Transmitter and receiver in separate housings

Fork sensors

    • Different light types (red light, infrared, laser)
    • Robust metal housing
    • Simple alignment to the object
    • High optical resolution and reproducibility
    • Fork widths in different sizes with standardized mounting holes
    • Identical mechanical and optical axes
    • The transmitter and receiver are firmly aligned to each other, yielding high process reliability

The next time you need to choose a photoelectric sensor for your manufacturing process, consider these features of each type to ensure the sensor is performing optimally in your application.

Photoelectric Basics – Distance Measuring

Some photoelectric applications require not only knowing if the object is present or not but exactly where the object is while providing a continuous or dynamic value representative of the objects location.  For instance, if a robot is stacking a product is the stack at the correct height or how many additional pieces can be placed on the stack, how large is the coil or roll diameter of a product, and how high is the level or how much further can the product move before it is in position.  Distance sensors can provide this dynamic information and in some case provide a digital output as well for alarms.

RetroreflectiveThese sensors are normally based on diffuse sensing technology. However, in some cases retro-reflective technology is used for extremely long sensing distances.  As with diffuse sensors there is only one device to mount and wire.  However, due to the technology required for the higher resolutions, lensing, electronics and outputs these devices are typically much more expensive than a discrete diffuse sensor.

Similar to a diffuse sensor the distance sensor emits a pulsed light that strikes an object and a certain amount of light is reflected back to the sensor’s receiver.  The sensor then generates an analog output signal that is proportional to the distance to the target.  The technology that is utilized within the sensor to determine the distance is either Time of Flight or Triangulation.

PrintTime of Flight sensors are more immune to target color and texture than light intensity based system because of the time component.  These devices measure greater distances than the triangulation method however there is a sacrifice in resolution.

PrintTriangulation sensors emit a pulsed light towards the target object.  The light is then reflected back to the receiver.  When the light reaches the sensor it will strike the photosensing diode at some angle.  The distance between the sensor and the target determines the angle in which the light strikes the receiver.  The closer the target is the sensor the greater the angle.
Triangulation based sensors being dependent on the amount of reflected light are more susceptible to target characteristics such as color and texture.  These sensors are characterized by short to mid-range sensing distance however they provide higher resolutions than TOF sensors.

Output signals are either 0…10 volts, 1…10 volts or 4…20mA each of which has their pros and cons.  Voltage outputs, 0 – 10 or 1- 10 volts, are easier to test and there is typically a broader offering of interface devices.  However voltage outputs are more susceptible to noise from motors, solenoids or other coils and voltage drops of the wire.  In addition generally voltage output cable runs should be less than 50 feet.  Also since 0 volts is an acceptable output value broken wires, device failures, or power failures can go undetected.

Current outputs, 4 – 20 mA, provide the best noise immunity, are not affected by voltage drop and the cables lengths can exceed 50 feet.  Since the sensor will be providing 4mA at zero distance its lowest possible signal, if the sensor should fail, the cable damaged or a power failure the interface device can detect the absence of the signal and notify an operator.  Current outputs are more difficult to test and in some cases are affected by temperature variations.

For more information about photoelectric sensors, request your copy of Balluff’s Photoelectric Handbook.

Photoelectric Output Operate Modes and Output Types

Photoelectric sensors are used in a wide variety of applications that you encounter every day. They are offered in numerous housing styles that provide long distance non-contact detection of many different types of objects or targets. Being used in such a variety of applications, there are several outputs offered to make integration to control systems easy and depending on the sensing mode when the output is activated in the presence of the target.

DiffuseDiffuse sensors depend on the amount of light reflected back to the receiver to actuate the output. Therefore, Light-on (normally open) operate refers to the switching of the output when the amount of light striking the receiver is sufficient, object is present. Likewise, Dark-on (normally closed) operate would refer to the target being absent or no light being reflected back to the receiver.

RetroreflectiveRetroreflective and through-beam sensors are similar in the fact they depend on the target interrupting the light beam being reflected back to the receiver. When an object interrupts the light beam, preventing the light from reaching the receiver, the output will energize which is referred to as Dark-on (normally open) operate switching mode or normally open. Light-on (normally closed) operate switching mode or normally closed output in a reflex sensor is true when the object is not blocking the light beam.

signalsOutputs from photoelectric sensors are typically either digital or analog. Digital outputs are on or off and are usually three wire PNP (sourcing output) or NPN (sinking outputs). The exception to this is a relay output that provides a dry or isolated contact requiring voltage being applied to one pole.

Analog outputs provide a dynamic or continuous output that varies either a voltage (0-10 volt) or current (4-20mA) throughout the sensing range. Voltage outputs are easier to integrate into control systems and typically have more interface options. The downside to a voltage output is it should not be ran more than 50 feet. Current outputs can be ran very long lengths without worry of electrical noise. As additional advantage of the analog output is that it has built in diagnostics, at its minimum there will always be some current at the input unless the device completely fails or the wire is damaged.

Some specialty photoelectric sensors will provide a serial or network communication output for communications to higher level devices. Depending on the network, IO Link, for instance, additional diagnostics can be provided or even parameterization of the sensors. io-link
Interested in learning more about photoelectrics basics? You can also request a copy of the new Photoelectric Handbook.

Back to the Basics – What Makes Background Suppression Sensors Capable of Solving Difficult Applications?

Diffuse photoelectric sensors have been and are used to successfully solve numerous applications in automation.  However, there are some applications that are too difficult or impossible to solve with standard diffuse sensors.  In some cases, these difficult applications can be solved with a background suppression sensor that is also based on the diffuse operation principal.  So the question is then raised, what makes the background suppression sensor capable of solving these difficult applications?

This may be a good time to review…  Diffuse sensors operate on the principal that when a light source is shined on a surface, the light is scattered or diffused in many directions. A small portion of the light is reflected back to the sensor receiver. The receiver used in this style of sensor is designed to be sensitive to a smaller or larger amount of light, depending on the sensor configuration, that is reflected back from the target surface.  There are a number of factors that affect how well diffuse sensors operate including, but not limited to, surface finish, color, texture or surface irregularities, target size, dirty or dusty environment and the background of the application.

Background sensors, sometimes referred to as BGS, actually have two receivers built into the sensor.  These two receivers detect the angle of the light reflected back from the target, referred to as triangulation.  If the target is between the focal point and the receiver the light is reflected to one receiver and if the target is beyond the focal point the light is reflected to the second receiver.  The sensor compares the amount of light on each receiver and sets the output accordingly.

Continue reading “Back to the Basics – What Makes Background Suppression Sensors Capable of Solving Difficult Applications?”

BGS Photo Sensors Are Here To Stay


Share

There is always debate of which sensing technology is better to use over a broad range of applications. And for the photo sensor world, BGS or background suppression is one of these. What many users don’t realize is that a background suppression photo sensor is what I will argue as a refined offshoot of the diffuse photo sensor principle, meaning the photo emitter and receiver is in a single housing and it uses the object or target as the reflective source. I say refined because it still uses a basic diffuse methodology, but has added technology that allows for a very specific response/detection zone based on the setting of the optics.

Continue reading “BGS Photo Sensors Are Here To Stay”

Shedding the Light on Diffuse Mode Photoelectric Sensors

Share/Bookmark

Photoelectric sensors have solved numerous industrial applications over the years. There are basically three different sensing modes. The first is diffuse or reflex mode, next is retro reflective, which requires a reflector, and the third is through beam, transmitted or opposed. These field devices provide an excellent means of detecting target at a distance without contacting the object. All of the sensing modes are based on the sensor’s ability to detect a change in light reaching the sensor’s receiver. In this posting, we will review the diffuse or reflex photoelectric sensor.

Continue reading “Shedding the Light on Diffuse Mode Photoelectric Sensors”