How IO-Link Sensors With Condition Monitoring Features Work With PLCs

As manufacturers continually look for ways to maximize productivity and eliminate waste, automation sensors are taking on a new role in the plant. Once, sensors were used only to provide detection or measurement data so the PLC could process it and run the machine. Today, sensors with IO-Link measure environmental conditions like temperature, humidity, ambient pressure, vibration, inclination, operating hours, and signal strength. By setting alarm thresholds, it’s possible to program the PLC to use the resulting condition monitoring data to keep machines running smoothly.

Real-time data for real-time response

A sensor with condition monitoring features allows a PLC to use real-time data with the same speed it uses a sensor’s primary process data. This typically requires setting an alarm threshold at the sensor and a response to those alarms at the PLC.

When a vibration threshold is set up on the sensor and vibration occurs, for example, the PLC can alert the machine operator to quickly check the area, or even stop the machine, to look for a product jam, incorrect part, or whatever may be causing the vibration. By reacting to the alarm immediately, workers can reduce product waste and scrap.

Inclination feedback can provide diagnostics in troubleshooting. Suppose a sensor gets bumped and no longer detects its target, for example. The inclination alarm set in the sensor will indicate after a certain degree of movement that the sensor will no longer detect the part. The inclination readout can also help realign the sensor to the correct position.

Detection of other environmental factors, including humidity and higher-than-normal internal temperatures, can also be set, providing feedback on issues such as the unwanted presence of water or the machine running hotter than normal. Knowing these things in real-time can stop the PLC from running, preventing the breakdown of other critical machine components, such as motors and gearboxes.

These alarm bits can come from the sensors individually or combined together inside the sensor. Simple logic, like OR and AND statements, can be set on the sensor in the case of vibration OR inclination OR temperature alarm OR humidity, output a discrete signal to pin 2 of the sensors. Then pin 2 can be fed back through the same sensor cable as a discrete alarm signal to the PLC. A single bit showing when an alarm occurs can alert the operator to look into the alarm condition before running the machine. Otherwise, a simple ladder rung can be added in the PLC to look at a single discrete alarm bit and put the machine into a safe mode if conditions require it.

In a way, the sensor monitors itself for environmental conditions and alerts the PLC when necessary. The PLC does not need to create extra logic to monitor the different variables.

Other critical data points, such as operating hours, boot cycle counters, and current and voltage consumption, can help establish a preventative and predictive maintenance schedule. These data sets are available internally on the sensors and can be read out to help develop maintenance schedules and cut down on surprise downtimes.

Beyond the immediate benefits of the data, it can be analyzed and trended over time to see the best use cases of each. Just as a PLC shouldn’t be monitoring each alarm condition individually, this data must not be gathered in the PLC, as there is typically only a limited amount of memory, and the job of the PLC is to control the machines.

This is where the IT world of high-level supervision of machines and processes comes into play. Part two of my blog will explore how to integrate this sensor data into the IT level for use alongside the PLC.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.

Condition Monitoring & Predictive Maintenance: Cost-Benefit Tradeoffs

In a previous blog post, we discussed the basics of the Potential-Failure (P-F) curve, which refers to the interval between the detection of a potential failure and occurrence of a functional failure. In this post we’ll discuss the cost-benefit tradeoffs of various maintenance approaches.

In general, the goal is to maximize the P-F interval, which is the time between the first symptoms of impending failure and the functional failure taking place. In other words, you want to become aware of an impending failure as soon as possible to allow more time for action. This, however, must be balanced with the cost of the methods of prevention, inspection, and detection.

There is a trade-off between the cost of systems to detect and predict the failures and how soon you might detect the condition. Generally, the earlier the detection/prediction, the more expensive it is. However, the longer it takes to detect an impending failure (i.e. the more the asset’s condition degrades), the more expensive it is to repair it.Every asset will have a unique trade-off between the cost of failure prevention (detection/prediction) and the cost of failure. This means some assets probably call for earlier detection methods that come with higher prevention costs like condition monitoring and analytics systems due to the high cost to repair (see the Prevention-1 and Repair-1 curves in the Cost-Failure/Time chart). And some assets may be better suited for more cost-efficient but delayed detection or even a “run-to-failure” model due to lower cost to repair (the Prevention-2 and Repair-2 curves in the Cost-Failure/Time chart).

 

There are four basic Maintenance approaches:

:

Reactive

The Reactive approach has low or even no cost to implement but can result in a high repair/failure cost because no action is taken until the asset has reached a fault state. This approach might be appropriate when the cost of monitoring systems is very high compared to the cost of repairing or replacing the asset. As a general guideline, the Reactive approach is not a good strategy for any critical and/or high value assets due to their high cost of a failure.

Reactive approaches:

      • Offer no visibility
      • Fix only if it breaks – low overall equipment effectiveness (OEE)
      • High downtime
      • Uncertainty of failures

Preventative

The Preventative approach (maintenance at time-based intervals) may be appropriate when failures are age related and maintenance can be performed at regular intervals before anticipated failures occur. Two drawbacks to this approach are: 1) the cost and time of preventative maintenance can be high; and 2) studies show that only 18% of failures are age related (source: ARC Advisory Group). 82% of failures are “random” due to improper design/installation, operator error, quality issues, machine overuse, etc. This means that taking the Preventative approach may be spending time and money on unnecessary work, and it may not prevent expensive failures in critical or high value assets.

Preventative approaches:

      • Scheduled tune ups
      • Higher equipment longevity
      • Reduced downtime compared to reactive mode

Condition-Based

The Condition-Based approach attempts to address failures regardless of whether they are age-based or random. Assets are monitored for one or more potential failure indicators, such as vibration, temperature, current/voltage, pressure, etc. The data is often sent to a PLC, local HMI, special processor, or the cloud through an edge gateway. Predefined limits are set and alerts (alarm, operator message, maintenance/repair) are only sent when a limit is reached. This approach avoids unnecessary maintenance and can give warning before a failure occurs. Condition-based monitoring can be very cost-effective, though very sophisticated solutions can be expensive. It is a good solution when the cost of failure is medium or high and known indicators provide a reliable warning of impending failure.

Condition-based approaches:

      • Based on condition (PdM)
      • Enables predictive maintenance
      • Improves OEE, equipment longevity
      • Drastically reduces unplanned downtime

Predictive Analytics

Predictive Analytics is the most sophisticated approach and attempts to learn from machine performance to predict failures. It utilizes data gathered through Condition Monitoring, and then applies analysis or AI/Machine Learning to uncover patterns to predict failures before they occur. The hardware and software to implement Predictive Analytics can be expensive, and this method is best for high-value/critical assets and expensive potential failures.

Predictive Analytics approaches:

      • Based on patterns – stored information
      • Based on machine learning
      • Improves OEE, equipment longevity
      • Avoids downtime

Each user will need to evaluate the unique attributes of their assets and decide on the best approach and trade-offs of the cost of prevention (detection of potential failure) against the cost of repair/failure. In general, a Reactive approach is only best when the cost of failure is very low. Preventative maintenance may be appropriate when failures are clearly age-related. And advanced approaches such as Condition Based monitoring and Predictive Analytics are best when the cost of repair or failure is high.

Also note that technology providers are continually improving condition monitoring and predictive solutions. By lowering condition monitoring system costs and making them easier to set up and use,  users can cost-effectively move from Reactive or Preventative approaches to Condition-Based or Predictive approaches.

Avoid Downtime in Metal Forming With Inductive & Photoelectric Sensors

Industrial sensor technology revolutionized how part placement and object detection are performed in metal forming applications. Inductive proximity sensors came into standard use in the industry in the 1960s as the first non-contact sensor that could detect ferrous and nonferrous metals. Photoelectric sensors detect objects at greater distances. Used together in a stamping environment, these sensors can decrease the possibility of missing material or incorrect placement that can result in a die crash and expensive downtime.

Inductive sensors

In an industrial die press, inductive sensors are placed on the bottom and top of the dies to detect the sheet metal for stamping. The small sensing range of inductive sensors allows operators to confirm that the sheet metal is correctly in place and aligned to ensure that the stamping process creates as little scrap as possible.

In addition, installing barrel-style proximity sensors so that their sensing face is flush with the die structure will confirm the creation of the proper shape. The sensors in place at the correct angles within the die will trigger when the die presses the sheet metal into place. The information these sensors gather within the press effectively make the process visible to operators. Inductive sensors can also detect the direction of scrap material as it is being removed and the movement of finished products.

Photoelectric sensors

Photoelectric sensors in metal forming have two main functions. The first function is part presence, such as confirming that only a single sheet of metal loads into the die, also known as double-blank detection. Doing this requires placing a distance-sensing photoelectric sensor at the entry-way to the die. By measuring the distance to the sheet metal, the sensor can detect the accidental entry of two or more sheets in the press. Running the press with multiple metal sheets can damage the die form and the sensors installed in the die, resulting in expensive downtime while repairing or replacing the damaged parts.

The second typical function of photoelectric sensors verifies the movement of the part out of the press. A photoelectric light grid in place just outside the exit of the press can confirm the movement of material out before the next sheet enters into the press. Additionally, an optical window in place where parts move out will count the parts as they drop into a dunnage bin. These automated verification steps help ensure that stamping processes can move at high speeds with high accuracy.

These examples offer a brief overview of the sensors you mostly commonly find in use in a die press. The exact sensors are specific to the presses and the processes in use by different manufacturers, and the technology the stamping industry uses is constantly changing as it advances. So, as with all industrial automation, selecting the most suitable sensor comes down to the requirements of the individual application.

Be Driven by Data and Decrease Downtime

Being “driven by data” is simply the act of making decisions based on real data instead of guessing or basing them on theoretical outcomes. Why one should do that, especially in manufacturing operations, is obvious. How it is done is not always so clear.

Here is how you can use a sensor, indicator light, and RFID to provide feedback that drives overall quality and efficiency.

 

Machine Condition Monitoring

You’ve heard the saying, “if it ain’t broke, don’t fix it.” However, broken machines cause downtime. What if there was a way to know when a machine is getting ready to fail, and you could fix it before it caused downtime? You can do that now!

The two main types of data measured in manufacturing applications are temperature and vibration. A sudden or gradual increase in either of these is typically an indicator that something is going wrong. Just having access to that data won’t stop the machine from failing, though. Combined with an indicator light and RFID, the sensor can provide real-time feedback to the operator, and the event can be documented on the RFID tag. The machine can then be adjusted or repaired during a planned maintenance period.

Managing Quality – A machine on its way to failure can produce parts that don’t meet quality standards. Fixing the problem before it affects production prevents scrap and rework and ensures the customer is getting a product with the quality they expect.

Managing Efficiency– Unplanned downtime costs thousands of dollars per minute in some industries. The time and resources required to deal with a failed machine far exceed the cost of the entire system designed to produce an early warning, provide indication, and document the event.

Quality and efficiency are the difference makers in manufacturing. That is, whoever makes the highest quality products most efficiently usually has the most profitable and sustainable business. Again, why is obvious, but how is the challenge. Hopefully, you can use the above data to make higher quality products more efficiently.

 

More to come! Here are the data-driven topics I will cover in my next blogs:

  • Part inspection and data collection for work in process
  • Using data to manage molds, dies, and machine tools