Predictive Maintenance vs. Predictive Analytics, What’s the Difference?

With more and more customers getting onboard with IIoT applications in their plants, a new era of efficiency is lurking around the corner. Automation for maintenance is on the rise thanks to a shortage of qualified maintenance techs coinciding with a desire for more efficient maintenance, reduced downtime, and the inroads IT is making on the plant floor. Predictive Maintenance and Predictive Analytics are part of almost every conversation in manufacturing these days, and often the words are used interchangeably.

This blog is intended to make the clear distinction between these phrases and put into perspective the benefits that maintenance automation brings to the table for plant management and decision-makers, to ensure they can bring to their plants focused innovation and boost efficiencies throughout them.

Before we jump into the meat of the topic, let’s quickly review the earlier stages of the maintenance continuum.

Reactive and Preventative approaches

The Reactive and Preventative approaches are most commonly used in the maintenance continuum. With a Reactive approach, we basically run the machine or line until a failure occurs. This is the most efficient approach with the least downtime while the machine or line runs. Unfortunately, when the machine or line comes to a screeching stop, it presents us with the most costly of downtimes in terms of time wasted and the cost of machine repairs.

The Preventative approach calls for scheduled maintenance on the machine or line to avoid impending machine failures and reduce unplanned downtimes. Unfortunately, the Preventative maintenance strategy does not catch approximately 80% of machine failures. Of course, the Preventative approach is not a complete waste of time and money; regular tune-ups help the operations run smoother compared to the Reactive strategy.

Predictive Maintenance vs. Predictive Analytics

As more companies implement IIoT solutions, data has become exponentially more important to the way we automate machines and processes within a production plant, including maintenance processes. The idea behind Predictive Maintenance (PdM), aka condition-based maintenance, is that by frequently monitoring critical components of the machine, such as motors, pumps, or bearings, we can predict the impending failures of those components over time. Hence, we can prevent the failures by scheduling planned downtime to service machines or components in question. We take action based on predictive conditions or observations. The duration between the monitored condition and the action taken is much shorter here than in the Predictive Analytics approach.

Predictive Analytics, the next higher level on the maintenance continuum, refers to collecting the condition-based data over time, marrying it with expert knowledge of the system, and finally applying machine learning or artificial intelligence to predict the event or failure in the future. This can help avoid the failure altogether. Of course, it depends on the data sets we track, for how long, and how good our expert knowledge systems are.

So, the difference between Predictive Maintenance and Predictive Analytics, among other things, is the time between condition and action. In short, Predictive Maintenance is a stepping-stone to Predictive Analytics. Once in place, the system monitors and learns from the patterns to provide input on improving the system’s longevity and uptime. Predictive Maintenance or Preventative Maintenance does not add value in that respect.

While Preventative Maintenance and Predictive Maintenance promises shorter unplanned downtimes, Predictive Analytics promises avoidance of unplanned downtime and the reduction of planned downtime.

The first step to improving your plant floor OEE is with monitoring the conditions of the critical assets in the factory and collecting data regarding the failures.

Other related Automation Insights blogs:

Condition Monitoring & Predictive Maintenance: Cost-Benefit Tradeoffs

In a previous blog post, we discussed the basics of the Potential-Failure (P-F) curve, which refers to the interval between the detection of a potential failure and occurrence of a functional failure. In this post we’ll discuss the cost-benefit tradeoffs of various maintenance approaches.

In general, the goal is to maximize the P-F interval, which is the time between the first symptoms of impending failure and the functional failure taking place. In other words, you want to become aware of an impending failure as soon as possible to allow more time for action. This, however, must be balanced with the cost of the methods of prevention, inspection, and detection.

There is a trade-off between the cost of systems to detect and predict the failures and how soon you might detect the condition. Generally, the earlier the detection/prediction, the more expensive it is. However, the longer it takes to detect an impending failure (i.e. the more the asset’s condition degrades), the more expensive it is to repair it.Every asset will have a unique trade-off between the cost of failure prevention (detection/prediction) and the cost of failure. This means some assets probably call for earlier detection methods that come with higher prevention costs like condition monitoring and analytics systems due to the high cost to repair (see the Prevention-1 and Repair-1 curves in the Cost-Failure/Time chart). And some assets may be better suited for more cost-efficient but delayed detection or even a “run-to-failure” model due to lower cost to repair (the Prevention-2 and Repair-2 curves in the Cost-Failure/Time chart).

 

There are four basic Maintenance approaches:

:

Reactive

The Reactive approach has low or even no cost to implement but can result in a high repair/failure cost because no action is taken until the asset has reached a fault state. This approach might be appropriate when the cost of monitoring systems is very high compared to the cost of repairing or replacing the asset. As a general guideline, the Reactive approach is not a good strategy for any critical and/or high value assets due to their high cost of a failure.

Reactive approaches:

      • Offer no visibility
      • Fix only if it breaks – low overall equipment effectiveness (OEE)
      • High downtime
      • Uncertainty of failures

Preventative

The Preventative approach (maintenance at time-based intervals) may be appropriate when failures are age related and maintenance can be performed at regular intervals before anticipated failures occur. Two drawbacks to this approach are: 1) the cost and time of preventative maintenance can be high; and 2) studies show that only 18% of failures are age related (source: ARC Advisory Group). 82% of failures are “random” due to improper design/installation, operator error, quality issues, machine overuse, etc. This means that taking the Preventative approach may be spending time and money on unnecessary work, and it may not prevent expensive failures in critical or high value assets.

Preventative approaches:

      • Scheduled tune ups
      • Higher equipment longevity
      • Reduced downtime compared to reactive mode

Condition-Based

The Condition-Based approach attempts to address failures regardless of whether they are age-based or random. Assets are monitored for one or more potential failure indicators, such as vibration, temperature, current/voltage, pressure, etc. The data is often sent to a PLC, local HMI, special processor, or the cloud through an edge gateway. Predefined limits are set and alerts (alarm, operator message, maintenance/repair) are only sent when a limit is reached. This approach avoids unnecessary maintenance and can give warning before a failure occurs. Condition-based monitoring can be very cost-effective, though very sophisticated solutions can be expensive. It is a good solution when the cost of failure is medium or high and known indicators provide a reliable warning of impending failure.

Condition-based approaches:

      • Based on condition (PdM)
      • Enables predictive maintenance
      • Improves OEE, equipment longevity
      • Drastically reduces unplanned downtime

Predictive Analytics

Predictive Analytics is the most sophisticated approach and attempts to learn from machine performance to predict failures. It utilizes data gathered through Condition Monitoring, and then applies analysis or AI/Machine Learning to uncover patterns to predict failures before they occur. The hardware and software to implement Predictive Analytics can be expensive, and this method is best for high-value/critical assets and expensive potential failures.

Predictive Analytics approaches:

      • Based on patterns – stored information
      • Based on machine learning
      • Improves OEE, equipment longevity
      • Avoids downtime

Each user will need to evaluate the unique attributes of their assets and decide on the best approach and trade-offs of the cost of prevention (detection of potential failure) against the cost of repair/failure. In general, a Reactive approach is only best when the cost of failure is very low. Preventative maintenance may be appropriate when failures are clearly age-related. And advanced approaches such as Condition Based monitoring and Predictive Analytics are best when the cost of repair or failure is high.

Also note that technology providers are continually improving condition monitoring and predictive solutions. By lowering condition monitoring system costs and making them easier to set up and use,  users can cost-effectively move from Reactive or Preventative approaches to Condition-Based or Predictive approaches.