Sensor Mounting Made Easy

So, you’ve figured out the best way to detect the product shuttle paddle in your cartoning/packaging machine needs a visible red laser distance sensor. It’s taken some time to validate that this is the right sensor and it will be a reliable, long-term solution.

But then you realize there are some mechanical issues involved with the sensor’s placement and positioning that will require a bit of customization to mount it in the optimal location. Now things may have just become complicated. If you can’t design the additional mounting parts yourself, you’ll have to find someone who can. And then you have to deal with the fabrication side. This all takes time and more effort than just buying the sensor.

Or does it?

Off-the-shelf solutions

It doesn’t have to be that complex. There are possible off-the-self solutions you can consider that will make this critical step of providing a reliable mounting solution – possibly as straightforward as choosing the right sensor. Multiple companies offer sensor mounting systems that accommodate standard sensor brackets. Over the years, companies have continued to develop new mounting brackets for many of their sensor products, from photoelectric sensors and reflectors to proximity sensors to even RFID heads and linear transducers.

So it’s only natural to take that one step further and create a mounting apparatus and system that not only provides a mounting bracket, but also a stable platform that incorporates the device’s mounting bracket with things like stand-off posts, adjustable connection joints, and mounting bases. Such a flexible and extensive system can solve mounting challenges with parts you can purchase, instead of having to fabricate.

Imagine in the example above you need to mount the laser distance sensor off the machine’s base and offset it in a way that doesn’t interfere with the other moving parts of the cartoner. Think of these mounting systems and parts as a kind of Erector Set for sensing devices. You can piece together the required mounting bracket with a set of brace or extension rods and a mounting base that raises the sensor up and off the machine base and even angles it to allow for pointing at the target in the most optimal way.

The following are some mounting solutions for a variety of sensors:

These represent only a small number of different ways to mix and match sensor device brackets and mounting components to find a solid, reliable and off-the-shelf mounting solution for your next mounting challenge. So before considering the customization route, next time take a look at what might already be out there for vendors. It could make your life a lot simpler.

Condition Monitoring & Predictive Maintenance: Addressing Key Topics in Packaging

A recent study by the Packaging Machinery Manufacturers Institute (PMMI) and Interact Analysis takes a close look at packaging industry interest and needs for Condition Monitoring and Predictive Maintenance. Customer feedback reveals interesting data on packaging process pain points and the types of machines and components which are best monitored, the data which should be gathered, current maintenance approaches, and the opportunity for a better way: Condition Monitoring and Predictive Maintenance.

What keeps customers awake at night?

The PMMI survey indicates that form, fill & seal machines are very critical to packaging processes and more likely to fail than many other machines. Also critical to the process and a common failure point are filling & dosing machines, and labeling machines.

These three categories of machines are in use in primary packaging and are often the key components in the production line; the downstream processes are usually less critical. They often process a lot of perishable products at high speeds, therefore, any downtime is a big problem for overall equipment effectiveness (OEE), quality, and profitability.

In terms of the components on these machines that are most likely to fail, the ones are pneumatic systems, gearboxes, motors/drives, and sensors.

How can customers reduce unplanned downtime and improve OEE?

Our data shows that the top customer issue is unplanned machine breakdowns, but many packaging firms use reactive or preventative maintenance approaches, which may not be effective for most failures. An ARC study found that only about 20% of failures are age-related. The 80% of failures that are non-age-related would likely not be addressed by reactive or preventative maintenance programs.

A better way to address these potential failures is to monitor the condition of critical machines and components. Condition monitoring can provide early detection of machine deterioration or impending failure and the data can be used for predictive maintenance. Many “smart sensors” can now measure vibration, temperature, humidity, pressure, flow, inclination, and many other attributes which may be helpful in notifying users of emerging problems. And some of these “smart sensors” can also “self-monitor” and help alert users to potential failures in the sensor itself.

What are packaging customers actually doing?

The good news is that the packaging industry is moving forward to find a better way and users understand that Condition Monitoring/Predictive Maintenance gives them the opportunity to prevent unplanned failures, reduce unplanned downtime, and improve OEE, quality and profitability. About 25% of customers have already implemented some sort of Condition Monitoring / Predictive Maintenance, while about 20% are piloting it and 30% plan to implement it. This means that 75% of customers are very interested in Condition Monitoring/Predictive Maintenance, by far the most interest in any technology discussed in the PMMI survey.

Where do you start?

    • Look for the machines which cause you the most frustration. PMMI identified form, fill & seal, filling & dosing, and labeling machines, but there are other machines, including bottling, cartoning, and case/tray handling, that could fail and cause production downtime or damaged product.
    • Consider where, when, and how equipment can fail. Look to your own experience, ask partners with similar machines or perhaps the equipment supplier to help you determine the most common failure points and modes.
    • Analyze which parts of the machine fail. Moving parts are usually the highest potential failure point. On packaging machines, these include motors, gearboxes, fans, pumps, bearings, conveyors, and shafts.
    • Consider what to measure. Vibration is common, and often assessed in combination with temperature and humidity. On some machines, pressure, flow, or amperage/voltage should be measured.
    • Determine the most appropriate maintenance program for each machine. Consider the costs/benefits of reactive, preventative, condition-based monitoring or predictive approaches. In some cases, it may be OK to let a non-critical, low-value asset “run-to-failure,” while in other cases it might be worth investing in Condition Monitoring or Predictive Maintenance to prevent a critical machine’s costly failure.
    • Start small by implementing condition monitoring on one or two machines, and then scaling up once you’ve learned what does and doesn’t work. Using a low-cost sensor, which can be easily integrated with existing controls architectures or added on externally, is also a great way to start.

Condition Monitoring and Predictive Maintenance offer packaging firms a “better way” to address key topics including machine downtime, failures, and OEE. Users can move from a reactive to a proactive maintenance approach by monitoring attributes such as vibration and temperature on critical machines and then analyzing the data. This will allow them to detect and predict potential failures before they become critical, and thereby, reduce unplanned downtime, improve OEE, and save money.