Let’s Get Small: The Drive Toward Miniaturization

minisensorGoing about our hectic daily lives, we tend to just take the modern cycle of innovation for granted. But when we stop to think about it, the changes we have seen in the products we buy are astonishing. This is especially true with regard to electronics. Not only are today’s products more feature-laden, more reliable, and more functional…they are also unbelievably small.

I remember our family’s first “cell phone” back in the ’90s. It was bolted to the floor of the car, required a rooftop antenna, and was connected to the car’s electrical system for power. All it did was place and receive phone calls. Today we are all carrying around miniature pocket computers we call “smartphones,” where the telephone functionality is – in reality – just another “app”.

Again going back two decades, we had a 32″ CRT analog television that displayed standard definition and weighed over 200 pounds; it took two strong people to move it around the house. Today it’s common to find 55″ LCD high-definition digital televisions that weigh only 50 pounds and can be moved around by one person with relative ease.

LabPhotoThese are just a couple of examples from the consumer world. Similar changes are taking place in the industrial and commercial world. Motors, controllers, actuators, and drives are shrinking. Today’s industrial actuators and motion systems offer either the same speed and power with less size and weight, or are simply more compact and efficient than ever before possible.

The advent of all this product miniaturization is driving a need for equally miniaturized manufacturing and assembly processes. And that means rising demand for miniaturized industrial sensors such as inductive proximity sensors, photoelectric presence sensors, and capacitive proximity sensors.

Another thing about assembling small things: the manufacturing tolerances also get small. The demand for sensor precision increases in direct proportion to manufacturing size reduction. Fortunately, miniature sensors are also inherently precision sensors. As sensors shrink in size, their sensing behavior typically becomes more precise. In absolute terms, things like repeatability, temperature drift, and hysteresis all improve markedly as sensor size diminishes. Miniature sensors can deliver the precise, repeatable, and consistent sensing performance demanded by the field of micro-manufacturing.

For your next compact assembly project, be sure to think about the challenges of your precision sensing applications, and how you plan to deploy miniature sensors to achieve consistent and reliable operation from your process.

For more information on precision sensing visit balluff.us/minis.

There’s more than just one miniature sensor technology

As I discussed in my last blog post, there is a need for miniature, precision sensors. However, finding the right solution for a particular application can be a difficult process. Since every sensor technology has its own strengths and weaknesses, it is vital to have a variety of different sensor options to choose from.

The good news is that there are several different technologies to consider in the miniature, precision sensor world. Here we will briefly look at three technologies: photoelectric, capacitive, and inductive. Together these three technologies have the ability to cover a wide range of applications.

Photoelectric Sensors

MiniPhotoelectricPhotoelectric sensors use a light emitter and receiver to detect the presence or absence of an object. This type of sensor comes in different styles for flexibility in sensing. A through-beam photoelectric is ideal for long range detection and small part detection. Whereas a diffuse photoelectric is ideal for applications where space is limited or in applications where sensing is only possible from one side.

Miniature photoelectric sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Capacitive Sensors

MiniCapacitiveCapacitive sensors use the electrical property of capacitance and work by measuring changes in this electrical property as an object enters its sensing field. Capacitive sensors detect the presence or absence of virtually any object with any material, from metals to powders to liquids. It also has the ability to sense through a plastic or glass container wall to detect proper fill level of the material inside the container.

Miniature capacitive sensors come with either the electronics fully integrated into the sensor or as a sensor with separate electronics in a remote amplifier.

Inductive Sensors

MiniInductiveInductive sensors use a coil and oscillator to create a magnetic field to detect the presence or absence of any metal object. The presence of a metal object in the sensing field dampens the oscillation amplitude. This type of sensor is, of course, ideal for detecting metal objects.

Miniature inductive sensors come with the electronics fully integrated into the sensor.

One sensor technology isn’t enough since there isn’t a single technology that will work across all applications. It’s good to have options when looking for an application solution.

To learn more about these technologies, visit www.balluff.us

Liquid Level Sensing: Detect or Monitor?

Pages upon pages of information could be devoted to exploring the various products and technologies used for liquid level sensing and monitoring.  But we’re not going to do that in this article.  Instead, as a starting point, we’re going to provide a brief overview of the concepts of discrete (or point) level detection and continuous position sensing.

 Discrete (or Point) Level Detection

Example of discrete sensors used to detect tank level
Example of discrete sensors used to detect tank level

In many applications, the level in a tank or vessel doesn’t need to be absolutely known.  Instead, we just need to be able to determine if the level inside the tank is here or there.  Is it nearly full, or is it nearly empty?  When it’s nearly full, STOP the pump that pumps more liquid into the tank.  When it’s nearly empty, START the pump that pumps liquid into the tank.

This is discrete, or point, level detection.  Products and technologies used for point level detection are varied and diverse, but typical technologies include, capacitive, optical, and magnetic sensors.  These sensors could live inside the tank outside the tank.  Each of these technologies has its own strengths and weaknesses, depending on the specific application requirements.  Again, that’s a topic for another day.

In practice, there may be more than just two (empty and full) detection points.  Additional point detection sensors could be used, for example, to detect ¼ full, ½ full, ¾ full, etc.  But at some point, adding more detection points stops making sense.  This is where continuous level sensing comes into play.

Continuous Level Sensing

Example of in-tank continuous level sensor
Example of in-tank continuous level sensor

If more precise information about level in the tank is needed, sensors that provide precise, continuous feedback – from empty to full, and everywhere in between – can be used.  This is continuous level sensing.

In some cases, not only does the level need to be known continuously, but it needs to be known with extremely high precision, as is the case with many dispensing applications.  In these applications, the changing level in the tank corresponds to the amount of liquid pumped out of the tank, which needs to be precisely measured.

Again, various technologies and form factors are employed for continuous level sensing applications.  Commonly-used continuous position sensing technologies include ultrasonic, sonic, and magnetostrictive.  The correct technology is the one that satisfies the application requirements, including form factor, whether it can be inside the tank, and what level of precision is needed.

At the end of the day, every application is different, but there is most likely a sensor that’s up for the task.

GIZMOS

Plural of Giz-mo.  A noun.  Defined as a gadget, one whose name the speaker does not know.  Customers call us and ask for this or that “gizmo” all the time!  I think we should consider creating a product category simply called “GIZMOS”.

I like to call these things “Enablers” because these devices are very much helping hands that optimize the function of sensors.  A sensor of any brand and manufacturer performs only as well as it’s mounted, matching the fixture to the demands of the application at hand. But how often does this happen in a price-driven world?  They often end up in below-par mounting that fails with regularity, in both pristine environments as well as in hostile environments.  Some examples:

Here’s one example below. These inductive proximity sensors in plastic brackets, showing an exposed coil on one, with corroded mounts on the sensor caused by being beaten to death during parts loading and heat.

gizmo1      gizmo2

With a few “Gizmos” like an application-specific quick change mount, some care in gapping the sensor and guarding the cable/connector system, it could look much different. Check out the examples below.

gizmo4 gizmo5

Photoelectric sensors can suffer the same fate.  In this case, a plastic bodied photoelectric sensor, originally used to replace a fiber optic thru beam pair also suffered abuse. With a little extra beefy mounting, these photoelectric sensors can be expected to last a long time without failure.

gizmo6 gizmo7

There are literally hundreds of these mounting “ENABLERS”, off-the-shelf, cost-effective application specific mounts, guards, actuators and entire systems to help protect your sensor investment.  All categories of products have these “enabling” accessories for Magnetic Field (air cylinder), Inductive Proximity, Capacitive, Ultrasonic, Connectivity, Linear Transducer and Photoelectric product categories.

Back to the Basics – How do I wire my 3-wire sensors?

Three-wire sensors are used in various applications from detecting parts to locating position of the actual machine. They can come in all different technologies such as inductive, photoelectric and capacitive, just to list a few. Although the sensor technology may differ, all 3-wire sensors are wired the same.A three-wire sensor has 3 wires present. Two power wires and one load wire. The power wires will connect to a power supply and the remaining wire to some type of load. The load is a device that is being controlled by the sensor. The most common type of load would be a PLC (programmable logic controller) DC input. Other examples of a load could be a relay or machine alarm, just make sure the load rating of the sensor is not exceeded. A typical 3-wire DC sensor’s output has a rating of 100mA to 200mA.

Continue reading “Back to the Basics – How do I wire my 3-wire sensors?”

Flush or Non-Flush – What’s the Difference?

In a previous blog Flush or Non-Flush, Looks Can Be Deceiving, Jeff mentions the two common housing designs of inductive sensors, flush and non-flush. So what does this mean to you when you are applying an inductive or even a capacitive sensor?

Flush-style sensors actually have a shield that restricts the magnetic field so that it only radiates out of the face of the sensor. Flush-style, or shielded sensors, can be mounted flush in a metal bracket or even in your machine without the metal causing the sensor to false trigger. When mounting two shielded inductive proximity sensors next to each other, you should typically leave one diameter of the sensor between adjacent sensors. The shielded-style of sensor will typically have approximately one-half of the sensing distance that a non-shielded version will have. For example, a 12mm shielded inductive sensor will have a sensing distance 2mm whereas a non-shielded version will have a sensing distance of 4mm. Although shielded style sensors have a shorter sensing range they can be buried in a machine or a bracket that will offer protection against damage.

Continue reading “Flush or Non-Flush – What’s the Difference?”

Upgrade Sensors…Upgrade Automation Performance


Share

In many cases, the mechanical components of an older machine can basically operate forever.  Critical surfaces can be remachined, and bearings and gears can be replaced again and again to restore lost accuracy and repeatability.

But what about the control system?  Sometimes older machines are retrofitted with a new controller to enhance its productivity and extend its useful life.  Such refits should not stop with the controller alone.  Many of the greatest improvements in machine performance can be obtained by upgrading the entire sensor package as well.  Sensors are at the heart of today’s automation systems.  They provide the critical information and feedback about what the system is doing, and the status and condition of products being handled and produced.

Continue reading “Upgrade Sensors…Upgrade Automation Performance”

Looking for some excellent online resources? Read this!

Share

I was trying to locate some information on capacitive sensors so naturally, I turned to the World Wide Web to see what I could find. As I was looking through the search engine results, I found a link to Sensors Magazine, and a two-part article on capacitive sensors that I highly recommend you read. Capacitive Sensor Operation Part 1: The Basics and Capacitive Sensor Operation Part 2: System Optimization do an excellent job in describing the basics through what you need to consider in applying capacitive sensors.

Continue reading “Looking for some excellent online resources? Read this!”

The Killer Application for Capacitive Sensors

Written by: Bjoern Schaefer

Capacitive sensors certainly serve a niche within the group of proximity sensors.  This niche makes people overlook the most striking feature this technology provides us – remote detection of any liquid through glass or plastic walls.  On the first look that does not sound too exciting and I agree, as long as you have not been tasked to specify a sensor to accomplish this very job.

Continue reading “The Killer Application for Capacitive Sensors”