Manufacturers Track Goods, Reduce Errors, Decrease Workload with RFID

More and more, retailer sellers are starting to require that manufacturers place RFID tags on their products before they leave the production facility and are shipped to those retail locations. From high-end electronics all the way down to socks and underwear are being tagged.

These tags are normally supplied by the retailer or through a contracted third party. Typically disposable UHF paper tags, they are only printed with a TID number and a unique EPC that may or may not correspond to the UPC and barcode that was used in the past. Most cases I have seen require that the UPC and a barcode be printed on these RFID tags so there is information available to the human eye and a barcode scanner when used.

While this is being asked for by the retailers, manufacturers can use these tags to their own advantage to track what products are going out to their shipping departments and in what quantities. This eliminates human error in the tracking process, something that has been a problem in the past, while also reducing workload as boxes of finished goods no longer must be opened, counted and inspected for accuracy.

A well-designed RFID portal for these items to pass through can scan for quantities and variances in types of items in boxes as they pass through the portal. Boxes that do not pass the scan criteria are then directed off to another area for rework and reevaluation. Using human inspection for just the boxes that do not pass the RFID scan greatly reduces the labor effort and expedites the shipping process.

I recently assisted with a manufacturer in the garment industry who was having to tag his garments for a major retailer with RFID tags that had the UPC and a barcode printed on them. The tags were supplied through the retailer and the EPCs on the tags were quite different then the UPC numbers printed on them.

The manufacturer wanted to know how many garments of each type were in each box. Testing showed that this could be done by creating a check point on his conveyor system and placing UHF RFID antennas in appropriate locations to ensure that all the garments in the box were detected and identified.

In this case, the manufacturer wanted was a simple stand-alone system that would display a count of different types of garments. An operator reviewed the results on a display and decided based on the results whether to accept the box and let the conveyor forward it to shipping or reject it and divert it to another conveyor line for inspection and adjustment.

While this system proved to be relatively simple and inexpensive, it satisfied the desires of the manufacturer. It is, however, possible to connect an RFID inspection station to a manufacturing information system that would know what to expect in each box and could automatically accept or reject boxes based on the results of the scans without human intervention and/or human error.

What Machine Vision Tool is Right for Your Application?

Machine vision is an inherent terminology in factory automation but selecting the most efficient and cost-effective vision product for your project or application can be tricky.

We can see machine vision from many angles of view, for example market segment and application or image processing deliver different perspectives. In this article I will focus on the “sensing element” itself, which scan your application.

The sensing element is a product which observes the application, analyzes it and forwards an evaluation. PC is a part of machine vision that can be embedded with the imager or separated like the controller. We could take many different approaches, but let’s look at the project according to the complexity of the application. The basic machine vision hardware comparison is

  1. smart sensors
  2. smart cameras
  3. vision systems

Each of these products are used in a different way and they fit different applications, but what do they all have in common? They must have components like an imager, lens, lighting, SW, processor and output HW. All major manufacturing companies, regardless of their focus or market segment, use these products, but what purpose and under what circumstances are they used?

Smart Sensors

Smart sensors are dedicated to detecting basic machine vision applications. There are hundreds of different types on the market and they must quickly provide standard performance in machine vision. Don’t make me wrong, this is not necessarily a negative. These sensors are used for simple applications. You do not want to wait seconds to detect QR code; you need a response time in milliseconds. Smart sensors typically include basic functions like:

  • data matrix, barcode and 2D code reading
  • presence of the object,
  • shape, color, thickness, distance

They are typically used in single purpose process and you cannot combine all the features.

Smart Cameras

Smart cameras are used in more complex projects. They provide all the function of smart sensors, but with more complex functions like:

  • find and check object
  • blob detection
  • edge detection
  • metrology
  • robot navigation
  • sorting
  • pattern recognition
  • complex optical character recognition

Due to their complexity, you can use them to find products with higher resolution , however it is not a requirement. Smart cameras can combine more programs and can do parallel several functions together. Image processing is more sophisticated, and limits may occur in processing speed, because of embedded PC.

Vision Systems

Typically, machine vision systems are used in applications where a smart camera is not enough.

Vision system consists of industrial cameras, controller, separated lighting and lens system, and it is therefore important to have knowledge of different types of lighting and lenses. Industrial cameras provide resolution from VGA up to 30Mpxl and they are easy connected to controller.

Vision systems are highly flexible systems. They provide all the functions from smart sensors and cameras. They bring complexity as well as flexibility. With a vision system, you are not limited by resolution or speed. Thanks to the controller, you have dedicated and incomparable processing power which provides multi-speed acceleration.

And the most important information at the end. How does it look with pricing?

You can be sure that smart sensor is the most inexpensive solution. Basic pricing is in the range of $500 – $1500. Smart cameras can cost $2000 – $5000, while a vision system cost would start closer to $6000. It may look like an easy calculation, but you need to take into consideration the complexity of your project to determine which is best for you.

Pros Cons Cost
Smart sensor
    • Easy integration
    • Simple configuration
    • Included lightning and lenses
    • Limited functions
    • Closed SW
    • Limited programs/memory
$
Smart camera
    • Combine more programs together
    • Available functions
    • Limited resolution
    • Slower speed due to embedded PC
$$
Vision system
    • Connect more cameras(up to 8)
    • Open SW
    • Different resolution options
    • Requires skilled machine vision specialist
    • Requires knowledge of lightning and lenses
    • Increased integration time
$$$

Capture

Traceability in Manufacturing – More than just RFID and Barcode

Traceability is a term that is commonly used in most plants today. Whether it is being used to describe tracking received and shipped goods, tracking valuable assets down to their exact location, or tracking an item through production as it is being built, traceability is usually associated with only two technologies — RFID and/or barcode. While these two technologies are critical in establishing a framework for traceability within the plant, there are other technologies that can help tell the rest of the story.

Utilizing vision along with a data collection technology adds another dimension to traceability by providing physical evidence in the form of an image. While vision cameras have been widely used in manufacturing for a long time, most cameras operate outside of the traceability system. The vision system and tracking system often operate independently. While they both end up sending data to the same place, that data must be transported and processed separately which causes a major increase in network traffic.

Datamatrixlesen_Platine

Current vision technology allows images to be “stamped” with the information from the barcode or RFID tag. The image becomes redundant traceability by providing visual proof that everything happened correctly in the build process. In addition, instead of sending image files over the network they are sent through a separate channel to a server that contains all the process data from the tag and has the images associated with it. This frees up the production network and provides visual proof that the finished product is what we wanted it to be.

Used separately, the three technologies mentioned above provide actionable data which allows manufacturers to make important decisions.  Used together, they tell a complete story and provide visual evidence of every step along the way. This allows manufacturers to make more informed decisions based on the whole story not just part of it.

What to Ask Before You Build an RFID System to Meet Your Traceability Needs

An industrial RFID system is a powerful solution for reliably and comprehensively documenting individual working steps in manufacturing environments. But an industrial RFID system that meets your application needs isn’t available off-the-shelf. To build the system you need, it is important to consider what problems you hope RFID will solve and what return on investments you hope to see.

RFID can deliver many benefits, including process visibility and providing data needed to better manage product quality. It can be used to improve safety, satisfaction and profit margins. It can even be used to help comply with regulatory standards or to manage product recalls. And RFID can be used in a wide range of applications from broad areas like supply management to inventory tracking to more specific applications. These improvements can improve time, cost or performance—though not typically all three.

It is essential to understand and document the goal and how improvements will be measured to in order to plan a RFID system (readers, antennas, tags, cables) to best meet those goals.

Other important questions to consider:

Will the system be centralized or de-centralized? Will the system be license plate only or contain process data on the tag?

How will the data on the tags be used?  Will the information be used to interface with a PLC, database or ERP? Will it be used to provide MES or logical functionality? Or to provide data to an HMI or web browser/cloud interface?

Will the system be required to comply with any international regulations or standards? If so, which ones: EPC Global, Class 1 Gen 2 (UHF only), ISO 15693, or 14443 (HF only)?

What environment does the system need to perform in? Will it be used indoor or outdoor? Will it be exposed to liquids (cleaning fluids, coolants, machine oils, caustics) or high or low temperatures?

Does the RFID system need to work with barcodes or any other human readable information?

What are the performance expectations for the components? What is the read/write range distance from head to tag? What is the station cycle timing? Is the tag metal-mounted? Does the tag need to be reused or be disposable? What communication bus is required?

With a clear set of objectives and goals, the mechanical and physical requirements discovered by answering the questions above, and guidance from an expert, a RFID system can be configured that meets your needs and delivers a strong return on investment.

How RFID Can Push Your Automotive Production Into the Fast Lane

The automotive industry is one of the technological trendsetters in the manufacturing industry. In 1913 Henry Ford invented the assembly line and forever changed automotive production. Now a bit more than a century later the automotive industry is again facing one the biggest innovations in its history.

The complexity of different models and the variety of equipment variations are enormous. This individuality comes with great challenges. The workers in the assembly process are confronted with countless, almost identical components. This requires accurate tracking of all items to avoid mistakes. Safety-relevant components are, therefore, often provided with a barcode that has to be scanned manually.

The major advantages of RFID over barcodes in automotive production

Another technology could relieve employees of this routine task and give them the security of having installed the right parts through automatic testing: RFID. These are the big advantages of RFID over barcodes:

  • While the barcode only contains the information about which type of product it is, the RFID tag provides additional information, such as in which vehicle the car seat is to be installed.
  • While the barcodes have to be read out manually one after the other with a handheld scanner, the RFID tags can all be detected simultaneously and without contact via a scanner – even if the parts are already installed.
  • RFID tags can be used to retrieve information in seconds at any time. During the production process, it can already be checked whether all the required components are installed –  provided they are all equipped with an RFID tag. Without RFID, this was only recorded in the final inspection, using visual inspection and paper list.
  • Additionally, nowadays it is indispensable for the automotive industry to make the production parts traceable and thereby assign them a unique identity. RFID has the advantage that without visual contact or even after a repainting of the component, the information can be easily retrieved. The function is not lost with dirt or oil coverage. Furthermore, tags with special encapsulation can retain their function even under high mechanical, thermal or chemical loads.

How does RFID work?

RFID is the identification of objects by electromagnetic waves.  A reader generates a high-frequency electromagnetic field. If a data carrier (also called “tag”) is brought into the vicinity of the reader, the specific structure of the tag ensures a change in the field and thus transmits individual information about itself – contactless.

RFID Tag and Reader
Functional principle of an RFID system

Increase process reliability and profitability with RFID

Several thousand parts are needed to build a car. But only those parts that are safety, environmentally or testing relevant get an RFID tag. For example, the motor cabling would get a tag that can be read out automatically. Without RFID a worker would have to manually enter the label in a database and errors can easily arise. RFID detects the part automatically and you don’t have to look for labels in transport boxes, etc.

With RFID you know exactly where a component is located at any time – from the moment of delivery until the belt run of the car. With this information you can react flexibly to changes in the process, such as delays in certain areas, and can reschedule at short notice. In addition, you can always retrieve the current stock and know whether the right component is mounted on the right vehicle. So it can significantly increase process reliability and efficiency. An RFID solution eliminates several manual steps in the documentation per vehicle, and it brings more transparency to the logistics and production processes. That means the effort is reduced and the profitability increases.

The implementation starts with the suppliers

Ideally, the implementation of RFID starts with the automotive suppliers. They attach the RFID tags to their components what allows them to use the technology within their own logistics and manufacturing facilities. On arrival to the car manufacturer, the parts are driven through an RFID gate that reads out the tags automatically and adds the parts to the inventory. If the car leaves the assembly hall after manufacturing you can screen again by the RFID gate. At the push of a button it can show which parts are under the hood.

Automatic configuration with UHF for your convenience

The processes in the automotive industry are versatile, but a broad selection of innovative RFID products can push your automotive production into the fast lane.

For more information on RFID, visit www.balluff.com.

Identification technology for Work In Process applications is evolving

wipI have had countless conversations over the years regarding barcode vs RFID. Most of those discussions I explained that both technologies have their own unique set of features and benefits and it is rarely the case where they are competing. I still stand by that general argument except when it applies to Work In Process applications. Looking back over the last four to six years there is evidence of a major evolution from barcode to RFID in the production process.

I guess the next question is why is this happening? I am not sure I have the definite answer, but there are a couple consistent factors that tend to come up when we are installing RFID in place of barcode:

Automation – True automation means there are no manual processes. When an operator has to pull a trigger on a barcode scanner the scan is not automated. Even with fixed barcode readers the barcode will sometimes need to be presented to the reader by an operator holding the part. With fixed RFID scanners the part is automatically scanned even without a direct line of sight and even in poor lighting conditions.

ROI – At first glance a barcode solution may seem to be more cost effective than RFID. However, things that need to be taken into account when going the barcode route are: specialized lighting, data management, longevity of the barcode in a harsh environment, etc. With RFID the tags can be read in complete darkness, the data can be managed locally, and the tags are built to survive harsh conditions. In addition, the cost of paper RFID labels has become manageable in the last couple years.

This is definitely something I will be keeping my eye on going forward. With a renewed focus on automation, identification technology will become more and more important as we move toward true automation.

To learn more about industrial RFID systems visit www.balluff.us.

Machine Tool Identification with RFID -Automation for Advanced Machining

When most people think of automation in manufacturing the first thing that comes to mind is usually a robot. Without a doubt, robots play an integral part in automating the production process, and let’s face it they are pretty cool. However, there is an often overlooked topic in the automation discussion and that is Automatic Data Collection (ADC), which includes barcode and RFID technology. While it doesn’t carry the “cool factor” quite as well as robotics, RFID has helped automate manufacturing, specifically machining, over the last 30 years.

How is it used?

An RFID tag is placed in the tool holder and stays put for the life of the tool. The tag essentially acts as a mini database that can be read and written to thousands of times.

What type of data is typically written to the tag?

Tool Life, Tool Chain Pocket location, Offset Data, Maintenance Info, etc. Up to 2K of info can be written and read and erased and written again. In addition, this information can be updated on the spot.

What are the benefits of using RFID in Machine Tools?

RFID Improves Quality, Increases Efficiency, and Reduces overall Costs by:

Maximizing Tool and Machine Utilization

  • Precise up-to-date tool life information
  • Accurate transfer of tool offset data
  • Continuous tracking of the tool

Minimizing Human Error

  • Eliminates human data entry
  • Automates transfer of data from presetter to machine
  • Data can be accessed directly on the plant floor as opposed to a database lookup

ToolIDRFID is a tried and true technology that will continue to have a great impact on the machining process. Organizations all over the globe are saving millions every year by utilizing this simple method of collecting and transferring data. Machine tool ID is a no-brainer when quality, efficiency, and productivity matters!

For more information or to learn more visit www.balluff.us.

Isn’t a bar code just a bar code?

Bar codes are normally read via a red line laser scanner, or a camera with decoding and positioning software.

There are 3 main types of bar codes.

1D (one dimensional), 2D (two dimensional) and a different type of 2D code is QR (Quick response) codes that we use today.

Each code has a little different attribute and how it’s read.

 1D bar codes are the ladder line bar codes you typically see in a grocery store, on merchandise and packaging.

While there are many different types of 1D bar codes and how they decipher a code the appearance is typically like the picture below.

1Dbarcode

 

 

 

 

 

A 2D Data Matrix code is much smaller than a 1D and can hold quite a bit more information. They can actually hold up to 2,335 alphanumeric characters.

There is redundancy built into the code, in case the code is scratched or defaced.

The code below is an example of a 2D Data Matrix code.

2Dbarcode

The code is read by utilizing a camera and decoding / positioning software.

A QR Code can hold more information than a Data Matrix code.

It can decipher numeric, alphanumeric, byte/binary and kanji.

While it was 1st developed for the automotive industry tracking parts during vehicle manufacturing, it is typically linked to a website when the code is scanned with a camera in a cell phone.

An example of the QR Code is pictured below.

QR Code

The code is read by utilizing a camera and decoding / positioning software.

There are various types of vision sensors that can be used to read different types of bar codes. You can learn more on Balluff’s website at www.balluff.us/vision.

Barcode and RFID, A one-two punch when it comes to sequencing

UHFRFIDAll too often I read about RFID replacing barcode as an ID technology. No doubt, there are cases where RFID is used to replace a barcode system due to a harsh environment or there is a need to “de-centralize” information etc., but more often than not I see both barcode and RFID being used together to address an application. It doesn’t have to be one or the other.

One application where the two live in harmony is sequencing. Sequencing is referred to by many different names and acronyms and is synonymous with automotive assembly plants and their tier suppliers. In a nutshell, the goal is to deliver the exact number of components in the exact order they will be used. When this is done efficiently the result is a WIN-WIN-WIN. A win for the supplier because they decrease the amount of in-process inventory and carrying costs; A win for the manufacturer because they maximize their floor space and spend less time hunting parts and components to complete a build; And a win for the consumer because they get their new car faster.

As one can imagine there is a great deal of communication and data sharing that must take place in order for this to operate smoothly. This is where the one-two punch of RFID and barcode come into play. The most common method is to identify the parts with barcodes and write the barcode data to the RFID tag which is fixed to the carrier. The information on the RFID tag identifies the carrier and identifies the components on the carrier. Rather than explain how this works, it makes more sense to look at a real-life example of how a major automotive supplier achieved their sequencing goals by using the one-two punch. Read Balluff’s Application Spotlight on UHF RFID Sequencing to learn more.

Industrial Identification – Barcodes

Written by: Andrew Bollinger

In the realm of manufacturing and industrial automation, the need to easily track products and collect information about their whereabouts has been a problem faced by many businesses. The complexities surrounding the details of successfully identifying and recording products’ information have traditionally been solved by implementing codes on the product’s label or package.  The most widely use code today is the one-dimensional barcode. While advances in one-dimensional code reading have continued to improve, new hardware, code readers, and symbology have made an emergence and are proving to be a more reliable means to track information.

Continue reading “Industrial Identification – Barcodes”